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ABSTRACT

Accurate measurement of plant phenotypic data can provide a comprehensive understanding of plant
physiology and help to study the relationship between plant genes and the environment. The application of
visible light and other multi-source and multi-dimensional imaging sensing technology can provide a rich data
source for plant phenotype identification and monitoring. With the continuous development and application of
computer technology in the field of plant phenotype analysis, deep learning techniques have achieved
significant progress in plant phenotype recognition and monitoring. On the basis of reviewing the relevant
research results at home and abroad at this stage, this paper firstly describes the common ways of plant
phenotype image acquisition. Then, it discusses in detail the current status of the application of deep learning
technology in the fields of classification, detection and segmentation of plant phenotypes, crop development
and yield prediction, as well as plant drought and pest stress, etc. Finally, it discusses the challenges and
future development goals of the deep learning method in the monitoring and recognition of plant phenotypes.
This paper aims to provide theoretical support and technical reference for the development and application of
deep learning technology in the field of agricultural plant phenotyping.
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INTRODUCTION

Phenotype refers to observable morphological traits of organisms across different growth environments
and stages ( Zhou et al., 2018). Plant phenotyping research focuses on acquiring high-quality trait data to
quantify the influence of genotype and environment on key traits, such as quality, yield, and stress tolerance
(Tester & Langridge, 2010, 2010; Ribaut et al., 2010). Accurate identification and monitoring of crop
morphological traits during growth enable precise water and fertilizer management, enhancing intelligent
agricultural production. Current plant phenotyping research emphasizes developing specialized algorithms to
expand observable and measurable plant traits while enhancing analytical accuracy and efficiency (Zhao,
2019). Table 1 illustrates classifications of common plant phenotypes and their specific characteristics. Optical
sensors now enable extraction of plant growth parameters from captured images, and image technology
applications in crop growth monitoring, pest and disease detection, and yield estimation are expanding. For
instance, features like leaf area, plant height, and stem width can be derived directly from 2D images, while
indices such as color metrics and normalized difference vegetation index (NDVI) facilitate quantitative plant
growth analysis (Sancho-Adamson et al., 2019).
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Table 1
Common plant phenotypic classifications and their specific characteristics
Pher.u.)typ.ic Subph.e.notypic Characteristic description
classification classification
Root system Root type, length, density, diameter, and number of branches
Stem Stem thickness and growth habit (upright or prostrate)
Morphological Leaf blade Leaf shape, color, size, thickness, and arrangement
Flower Flower pattern, color, size, and arrangement
Fruit Fruit shape, size, color, number and seed distribution
Photosynthesis Photosynthetic rate and chlorophyll content
Transpiration Stomatal density, opening and closing behavior, and water-use efficiency
Physiological
Stress tolerance Drought, salt, flood, cold, and high-temperature resistance
Nutrient absorption Efficiency of elemental absorption
Seed germination Germination rate, time, and potential
Developmental Seedling stage Height, growth rate, and color
biology Growth cycle Growth rate, flowering period, maturity period, and lifespan
Branching and Number of tillers and bud distribution
sprouting

Extensive studies have shown that deep learning excels in solving intricate problems, with image
recognition being a prominent success case (Syuen et al., 2022). Researchers have applied deep learning
techniques to agriculture. Single-layer neural network methods are limited to specific plant phenotypic traits in
specific environments (Hou et al., 2017; Zhang et al., 2020). In contrast, multi-layer neural network structures,
such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Long Short-Term
Memory (LSTM) models, exhibit better adaptability and have achieved impressive results in agricultural
applications (Gowri et al., 2024).

This paper systematically reviews traditional methods for capturing plant phenotyping images and
summarizes the current applications of deep learning in plant classification, detection, and segmentation, as
well as in growth, development, and yield prediction, and in assessing drought, pest, and disease stress.
Finally, it discusses the challenges and future goals of deep learning in plant phenotypic monitoring and
identification. The study aims to provide theoretical support and technical references for advancing deep
learning applications in agricultural plant phenotyping.

TRADITIONAL METHODS FOR PLANT PHENOTYPIC IMAGE ACQUISITION

By processing multi-source plant image data, crop phenotypic parameters can be monitored in real time
under different environmental conditions. This paper introduces five commonly used plant phenotyping
acquisition techniques: visible light imaging, fluorescence imaging, infrared thermal imaging, 3D imaging, and
hyperspectral imaging. Table 2 summarizes the different imaging techniques and their applications in plant
phenotyping.

Visible light imaging

Visible light imaging captures reflected or transmitted light signals in the visible spectrum, converts them
into digital data, and outputs the image (Aboalia et al., 2024). Marchetti et al., (2019), designed and validated
a non-invasive, reproducible indoor phenotyping technique based on RGB images for screening barley
genotypes with potential tolerance to water stress. Results showed significant correlations between canopy
height and above-ground fresh weight (R = 0.90, P < 0.001), leaf length, width, and relative water content
(RWC). However, RGB imaging alone provides only morphological data. Comprehensive analysis of barley
physiological responses requires integration with fluorescence imaging or destructive sampling.
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Gée et al. (2023), calculated the normalized dark green color index (nDGCI) from RGB images of winter
wheat captured under uniform lighting to estimate the nitrogen nutrition index (NNI), thereby predicting nitrogen
status. Under single-variety conditions, the coefficient of determination R* between nDGCI and NNI reached
0.73-0.91, indicating a high correlation between the two indices. Coswosk et al. (2024), utilized RGB images
to analyze the relationships between vegetation indices and yield, morphological, and physiological traits
across different maize genotypes. Their findings revealed that visible vegetation indices such as VARI, NGRDI,
and GLI showed strong correlations with grain yield (reaching up to r=0.99). However, RGB sensors can only
capture visible light bands and cannot capture near-infrared information, limiting their precise assessment of
physiological parameters such as chlorophyll fluorescence and water stress.

Visible light imaging technology is cost-effective and versatile, but it cannot capture depth or near-
infrared information. It struggles to extract effective features from sparse canopies and fails to obtain additional
phenotypic data. Factors such as lighting conditions, background interference, and crop organ occlusion also
significantly impact its analytical accuracy. These limitations hinder its large-scale deployment in practical
production.

Table 2
Different Techniques for Plant Phenotyping
Imaging Sensor O_rlglnal Extracted Advantages Image Reference
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Canopy size, -
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area, and . . o (/%
D) information e e
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oropnhy monitoring of
Fluorescence 9 . .
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distribution etal. 2023)
Wang R. et al. 2022;
Tunca et al. 2024;
Chen et al., 2024;
Plant heiaht Fast and ¢ Wang Y. et al., 2022;
_ ant heignt, ast and cost- Kumar et al., 2022;
dimonional Stc?;e(t)hor Depthimage ~ oranching,  effective 3D § Wang Y.et al, 2024;
imaain carr?era P 9 and canopy data # Zheng et al., 2022,
9ng structure acquisition | Geetal 2020; X. Liu
iisa etal, 2024; Y. Zhou
PEEREEEEE et al, 2024
(Ge et al.
2020)
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Leaf/ .
Gr)r?oi(s:i?r:py identification of Eva et al. 2023;
Hyperspect . . .y nutritional ;
Hyperspectr . Continuous/dis vegetation Almoujahed et al.
. . ral imager . status, plant .
al imaging crete spectrum  health index, 2025,
(HSI) and canopy type, and -
density disease (Eva et al. Rahman et al. 2025
presence 2023)
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Fluorescence imaging

Fluorescence imaging captures the emitted light from fluorescent substances that are excited by specific
wavelengths, generating images based on their luminescent properties. Si et al., (2023), conducted drought
stress experiments on Longjing tea seedlings in a dark chamber. By analyzing chlorophyll fluorescence excited
by 248.6 nm deep ultraviolet laser, they found that the slope fluorescence index (SFI) was highly correlated
with the number of stress days (R? = 0.94). Liu G. et al., (2024), employed multispectral fluorescence imaging
to assess chlorophyll content in wheat. By processing multiple fluorescence images and calculating the
ultraviolet-to-visible fluorescence ratio parameter, they found ten fluorescence parameters—including Fr740—
to be highly correlated with chlorophyll content. However, fluorescence signals are susceptible to interference
from ambient light, necessitating measurements under low-light conditions. Banah et al. (2024), used a deep
ultraviolet fluorescence spectrometer to collect emission spectra from healthy maize leaves and those infected
with Southern leaf blight (SLB). Detection at the excitation wavelength revealed that SLB-infected leaves
exhibited significantly higher fluorescence intensity at 325 nm compared to healthy leaves, indicating that
enhanced fluorescence at this wavelength directly correlates with fungal infection phenotypes. However, the
large diameter of the fluorescence spots made it difficult to distinguish fungal spore concentration gradients
and their spatial distribution.

Although fluorescence imaging offers advantages such as molecular-level sensitivity and real-time
analysis of physiological processes, its application is constrained by drawbacks including significant
interference from light exposure and background noise, relatively large fluorescence spot diameters, and the
requirement for species- or genotype-specific calibration.

Infrared thermography

Infrared thermography captures and analyzes infrared radiation emitted by objects to reveal spatial
temperature distributions, converting the radiation intensity into pseudo-color images (Zhang et al., 2022).
Sashuang et al. (2023), utilized thermal imaging fused with visible light to extract multimodal features from
potato canopy fusion images. They constructed a partial least squares regression model to predict potato
photosynthesis and fluorescence dynamics, achieving an R? = 0.85 for net photosynthetic rate and R? = 0.66
for stomatal conductance in Zhongshu No. 5 potatoes. However, thermal infrared cameras (640%480 resolution
in this study) generally have lower resolution than RGB cameras, making it difficult to capture fine features or
early stress responses. Ma et al. (2024), utilized infrared thermal imaging to obtain winter wheat canopy
temperature data, thereby calculating the crown water stress index (CWSI). Findings revealed that during the
jointing stage, CWSI exhibited extremely significant negative correlations (p<0.01) with soil moisture content
and leaf relative water content, and significant negative correlations (p<0.05) with stomatal conductance,
transpiration rate, and photosynthetic rate. During the flowering and grain filling stages, CWSI exhibited
extremely significant negative correlations (p<0.01) with all physiological and soil parameters. However, to
mitigate environmental fluctuations, infrared thermography measurements typically require specific time
windows, limiting measurement flexibility and real-time monitoring capabilities.

Infrared thermal imaging can directly reflect plant physiological states and capture changes in plant
physiological functions. However, it is highly sensitive to environmental conditions and has relatively low
resolution, making it difficult to detect micro-scale temperature variations at the leaf level. Therefore, it must
be combined with other data to interpret physiological mechanisms and avoid misinterpretation.

Current status of three-dimensional stereoscopic plant phenotypic analysis and detection

Three-dimensional (3D) measurement technology allows fast, accurate, and non-invasive
measurements, offering fundamental data for quantitative studies on plant growth patterns (Jiang et al., 2025).
To enhance measurement accuracy and capture detailed crop spatial morphology, researchers have
integrated 3D data into non-destructive crop inspection methods (Lei et al., 2024). Based on measurement
methods, 3D phenotypic inspection techniques primarily include structure-from-motion (SfM), structured light
methods, laser scanning, and binocular stereo vision techniques (Yu et al., 2024).

The Structure-from-Motion (SfM) method reconstructs 3D information of target objects by processing
sequential images or videos. Wang R. et al. (2022), achieved a segmentation accuracy of 0.961 for stem and
leaf parts of seedling-stage Chinese cabbage using an improved hypervoxel segmentation method based on
the SfM algorithm. The coefficient of determination R? for measured phenotypic parameters such as plant height
and leaf length exceeded 0.98, with the MAPE for all parameters except leaf area remaining below 2.5%.

84



Vol. 77 No. 3/ 2025 INMATEH - Agricultural Engineering

Tunca et al. (2024), calculated sorghum plant height using the difference between the digital surface
model (DSM) and digital terrain model (DTM) generated through SfM. The results showed high consistency
with ground-truth measurements (R? = 0.97, RMSE = 8.77 cm, MAPE = 5.98%), demonstrating that SfM
combined with DSM, DTM, and ground control points can accurately estimate sorghum plant height. Although
SfM achieves high accuracy under ideal conditions, it relies on feature matching across multi-view images.
The resulting point cloud data is voluminous, making reconstruction of complex structures challenging.

The structured light method obtains 3D information of an object by projecting a specific light pattern onto
the object and capturing the deformation of the pattern using a sensor. Researchers acquired point cloud data
of black-skinned chicken-of-the-woods fruiting bodies using an SR300 depth camera based on structured light
technology, and obtained point cloud data of spherical fruit bodies using a dual-camera structured light system.
Through point cloud reconstruction techniques and processing algorithms, they successfully extracted target
three-dimensional phenotypic parameters. The former achieved an R? value exceeding 0.97, while the latter
demonstrated a relative error in diameter reconstruction below 3.32% (Chen et al., 2024; Y. Wang et al., 2022).
Although the structured light method yielded favorable results, it also faces limitations such as high demands
on ambient lighting conditions, algorithmic complexity requiring manual intervention, and potentially reduced
reconstruction accuracy for irregular shapes.

3D laser scanning technology reconstructs 3D data of objects with high accuracy by scanning.
Researchers employed LIiDAR technology, 3D digital scanning methods, and 3D reconstruction techniques to
capture 3D point clouds of strawberries at different growth stages, morphological structures of wheat seedlings,
and multi-angle fruit point clouds of sweet peppers. This enabled non-destructive measurement of strawberry,
wheat seedling stage, and bell pepper fruit. Among these, the R? values for individual strawberry point cloud
counts, volume, plant height, and canopy area were relatively high (0.98/0.90/0.93/0.96). For wheat seedlings,
the extraction accuracy of stem length, leaf length, stem diameter, and stem-leaf angle was high
(R?=0.93/0.98/0.93/0.85). For bell pepper fruits, the mean relative errors for fruit width and height were small,
at 1.72% and 1.60%, respectively (Kumar et al., 2022; Wang Y. et al., 2024, Zheng et al., 2022). Although 3D
laser scanning technology offers high non-destructive fitting accuracy, its system integration, calibration, and
algorithms are extremely complex, resulting in high deployment costs.

The binocular stereo vision method measures depth information of objects using the parallax between
two cameras with different viewing angles. Ge et al. (2020), employed binocular stereovision technology to
identify cauliflower seedlings, utilizing the differential sum-of-squares algorithm for the stereo matching step
and the k-medoids algorithm for the clustering step. Results demonstrated that this method achieved an
average correct recognition rate of 98.75% across 240 pairs of cauliflower seedling images. To address the
accuracy challenges in image depth estimation models caused by insufficient effective photometric loss
metrics, researchers employed a stereo camera to capture RGB and depth images of field corn and Chinese
cabbage. Segmentation and depth prediction were then performed. Compared to Monodepth2, the average
relative error and average absolute error for field corn depth estimation decreased by 48.2% and 17.1%,
respectively, while the average absolute error for Chinese cabbage leaf inclination was less than 5.5°,
validating the feasibility of automated non-destructive crop measurement (X. Liu et al., 2024; Y. Zhou et al.,
2024). Although the binocular stereoscopic vision method is low-cost and generates highly accurate 3D data,
it requires strict calibration and alignment procedures. Matching accuracy is affected by lighting conditions,
and computational complexity is relatively high.

Various 3D imaging technologies exhibit significant differences in accuracy, cost, and environmental
requirements, creating complementary application scenarios. Compared to structured light methods, which are
susceptible to ambient light interference, and stereo vision, which involves complex calibration and is affected
by lighting conditions, Structure from Motion (SfM) relies less on lighting. However, it generates massive point
cloud datasets, posing challenges for reconstructing complex plant structures. In terms of accuracy, 3D laser
scanning typically achieves the highest precision but involves complex system integration and high deployment
costs. SfM and stereo vision offer a better balance between cost and accuracy. Therefore, selecting the
appropriate 3D imaging technology requires weighing accuracy requirements, budget constraints, and
environmental conditions.

Hyperspectral imaging technology

Hyperspectral imaging captures both spatial and spectral information of a target, providing continuous
spectral band data for each pixel. Eva et al. (2023), investigated the effects of nematode feeding and drought
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stress on the spectral characteristics of maize leaves to evaluate the effectiveness of hyperspectral imaging
in distinguishing between biotic and abiotic stresses in maize. The results showed that the accuracy rates for
pest detection and drought stress detection reached 98% and 95.9%, respectively. However, the hyperspectral
images in this study contained hundreds of bands, posing significant challenges for data processing.
Almoujahed et al. (2025), employed hyperspectral cameras to detect Fusarium head blight (FHB) in winter
wheat, successfully distinguishing healthy from infected ears before visual symptoms appeared, achieving an
overall classification accuracy of 84.7%. However, hyperspectral data in the experiment proved susceptible to
environmental interference, requiring multiple calibrations. Among the 224 bands in the full spectrum, only a
few were correlated with FHB, making the optimization process cumbersome. Rahman et al. (2025), developed
a high-throughput plant phenotyping system that successfully predicted leaf water content under drought
conditions by analyzing spectral reflectance from acquired hyperspectral images, achieving an R? = 0.81 on
the test set. However, hyperspectral data comprise numerous bands (224 bands used in this study), with
adjacent bands exhibiting high correlation, thereby increasing the complexity of data processing and model
training.

Despite demonstrating significant potential in plant phenotyping research, hyperspectral imaging
technology faces multiple constraints in its application, including environmental interference, data noise,
dimensional redundancy, and hardware costs. Future efforts should integrate multispectral fusion, field
adaptive calibration, or low-cost sensor optimization to enhance its practicality.

CURRENT STATUS OF PLANT PHENOTYPIC ANALYSIS AND MONITORING BASED ON DEEP
LEARNING

Deep neural networks consist of multiple layers of trainable structures, through which data passes to
become more abstract and is eventually represented as a high-dimensional feature vector. Developed from
early simple perceptual machines, deep neural networks can process complex information nonlinearly and
automatically learn hierarchical features of the data, eliminating the need for manual feature extraction. Current
research directions in deep learning for plant phenotyping and monitoring include: identification of crop
morphological traits, prediction of crop growth, development, and yield, regression-based yield forecasting,
and studies on plant stress responses (Bini et al., 2021).

Recognition of plant phenotypic traits using deep learning

In recent years, plant analysis research has gradually evolved from basic classification and regression
to object detection and segmentation. In the field of crop phenotype recognition, the application of deep
learning techniques is primarily categorized into classification, detection, and segmentation. This paper will
systematically explore the application of deep learning in plant phenotypic feature recognition, focusing on
these three categories. Figure 1 presents the classification, detection, and segmentation diagram of corn plants
(Murphy et al., 2024), and Table 3 provides the plant morphological feature recognition based on deep learning.

)
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Fig. 1 - Example of classification, detection and segmentation of corn plants
(Murphy et al., 2024)

(1) Classification
Plant image classification is generally divided into two main categories: cross-species coarse-grained
semantic classification, which involves recognizing different plants by acquiring salient features from plant
images, and same-species fine-grained classification, which requires the model to focus on subtle features in
images to distinguish similar plants. In plant image classification, convolutional neural networks (CNNs)
demonstrate excellent performance. Their network structure includes feature extraction and mapping modules,
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achieving neuron weight sharing through convolution, activation, pooling, and fully connected layers, directly
extracting plant features from images to improve processing speed and accuracy. Figure 2 presents the
schematic diagram of the convolutional neural network.
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Fig. 2 - Convolutional neural network schematic(Cao et al., 2024)
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Currently, ResNet and MobileNet are the two most popular neural networks for plant image
classification tasks, representing two distinct optimization approaches (Yang et al., 2025). ResNet's core
advantage lies in its effective mitigation of gradient vanishing in deep networks through residual modules,
enhancing feature propagation capabilities to better capture complex, abstract features. MobileNet, on the
other hand, prioritizes extreme efficiency. By employing separable convolutions, it significantly reduces
computational complexity and parameter count, making it well-suited for deployment on resource-constrained
mobile devices while maintaining precise capture of fine-grained features.

Ali et al. (2022), developed a plant leaf classification model based on the MobileNetV2 architecture
using transfer learning. This model eliminates the need for manual feature extraction, employs a shallower
architecture with fewer asynchronous parameters, and achieves classification accuracy exceeding 90%.
However, it exhibits high system complexity, requiring the design of intricate termination conditions and
knowledge transfer logic, along with parameter tuning. Vasconez et al. (2024), conducted a classification study
on tomato wilt disease, comparing and analyzing 14 deep learning models. They evaluated performance using
multiple metrics, with MobileNet-v2 and Xception models ultimately demonstrating the best results, both
achieving an accuracy rate of 97.7%. However, the study's conclusions are based on a specific dataset and
disease, and their generalizability to other plant diseases remains to be verified. Due to the unreliability of
classification results generated from limited labeled crop samples, Wang H. et al. (2024), developed a
customized network architecture, VPSNet. This network draws inspiration from ResNet's residual connection
concept, introducing shortcut connections within each block to mitigate the vanishing gradient problem in deep
networks. It enables efficient extraction of multi-level semantic features from limited labeled samples.
Experiments demonstrate that VPSNet achieves outstanding performance across three limited-labeled-sample
domains (SA I, SA lll, SA V). However, this method was designed for satellite imagery and cannot be directly
applied to RGB plant images.

When pursuing extreme precision with ample computational resources, ResNet-based models should
be prioritized. For mobile deployment or real-time processing, MobileNet and its variants (such as
MobileNetV2) are the preferred choice. When data is scarce, customized network architectures and domain
adaptation algorithms (like VPSNet) can be designed based on data characteristics (e.g., time series) to
fundamentally enhance the model's ability to learn from limited samples.

(2) Detection

The detection task involves both classification and localization of targets, with the main models for plant
image detection currently including YOLO and Faster R-CNN. Deep learning frameworks for target detection
typically require large and diverse datasets for training. However, practical applications often encounter issues
such as insufficient data volume and imbalanced sample sizes across categories, which can hinder the
performance of trained models.

Seyam et al. (2024), conducted a study on leaf disease detection using nine pre-trained models,
including DenseNet201, alongside a custom CNN (LDDTA). All models were trained and evaluated on the
PlantVillage dataset. Results indicate that LDDTA achieves comparable performance to pre-trained models
while requiring the shortest training time (1891.22 seconds). With only 184,890 parameters and a model size
of 2.36 MB, it significantly undercuts other models, achieving an optimal balance between efficiency and
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resource consumption. Rai and Pahuja (2024), designed a deep convolutional neural network (ETL-NET)
based on ensemble transfer learning to detect diseases in cotton leaves and plants. By employing a bagging
strategy to average and fuse the probability outputs from five optimal models including InceptionV3, the
approach enhanced robustness. In real field conditions, ETL-NET achieved a near-perfect classification
accuracy of 99.48%. However, it should be noted that due to integrating five pre-trained models, ETL-NET's
training time is significantly longer than that of a single model. Mhala et al. (2025), developed an efficient and
robust potato disease diagnosis system by integrating transfer learning, customized data augmentation, and
regularization techniques. Performance comparisons of NASNetMobile, DenseNet201, and ResNet152v2
models were conducted on detecting three types of diseased potato leaf images captured in real field
environments. Results showed DenseNet201 achieved the highest accuracy of 77.14% on the original dataset,
but its large parameter count necessitates future exploration of distillation and quantization techniques.

Table 3
Deep Learning-Based Recognition of Plant Morphological Features
Data Data Comparison
Task Database preproces Model Effect . Refe-
. enhance- algorithm
sing ment rence
Tomato . 12 .
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i . dependent . V2, o ez etal.
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; image Xception 2024)
tion used
Rotation,
Plant leaf shifting, S-LeafNET, 1o accuracy ResNet26, (H.
stage MalayaKew Rotated by L W-
. o mirroring, rate exceeds Alex-Net, and Wang et
identificati dataset 7 degrees LeafNET,P- o
and 99% ResNet50 al. 2024)
on . LeafNET
shuffling
Image
standardiz Rotation,
Blade ation, and flipping Custom Outperforms (Seyam
. PlantVillage o 27 convolution . DenseNet201,
disease normalizati cropping, pretrained etal.
- dataset al neural among others
detection on of and models 2024)
. . network
image adjustment
values
Classifica Kaggle's Random
tion of ggles Normalize . . Accuracy rate . (Rai &
. datasets with . permutation Bagging . InceptionV3, ,
diseased d image . . exceeding Pahuja,
2,293 and . of image integrated o among others
cotton : size 98.5% 2024)
| 1,711 images data
eaves
aﬁ:(t:?a?iec’)tn Rotation
Detection 3,076 disease- . and data Achieves the ~ NASNetMobil
: and pixel DenseNet2 . (Mhala et
of potato infected leaf enhanceme highest e and
; . value 01 al. 2025)
leaf blight images o nt accuracy ResNet152v2
normalizati .
techniques
on
Image
standardiz Average
3,857 ation, Optimized 9 CCNet,GCNet .
Weed Not accuracy rate (T. Liu et
. annotated segmentat . DeepLabV . ,ISANet, and
detection . . applicable exceeding al., 2024)
images ion, and 3+ model 99.59% DeepLabV3
preproces e
sing

When models need to be deployed for edge computing and mobile applications, the LDDTA model is
recommended. When computational cost is not a concern and peak performance is required, the ETL-NET
model is the preferred choice. For detecting complex backgrounds and unevenly distributed samples of
different diseases, the DenseNet201 model is suitable.

(3) Segmentation

The effectiveness of leaf segmentation is often influenced by dataset quality as well as environmental

factors such as complex backgrounds and lighting conditions (Wang & Cao, 2021).
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In recent years, image segmentation research has incorporated various deep learning methods, with
segmentation tasks categorized into semantic segmentation and instance segmentation. Semantic
segmentation classifies images at the pixel level, accurately identifying different regions of crops and
backgrounds. It is widely used for recognizing structures such as crop morphology, leaves, and roots, with U-
Net and DeeplLabV3+ being common semantic segmentation architectures. Figure 3 illustrates the U-Net
model (Cao et al., 2024). Instance segmentation, in contrast, not only distinguishes between different
categories but also identifies individual instances within the same category, with Mask R-CNN being a typical
method.
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Fig. 3 - U-Net model diagram (Cao et al., 2024)

In plant image semantic segmentation, Li Q. et al. (2021), proposed an ensemble U-Net segmentation
model designed for small-sample datasets. By integrating residual blocks and gated convolutions to construct
edge structures, this model effectively extracts boundary semantic information from target images. It achieved
a segmentation accuracy exceeding 92.14%, significantly improving fruit segmentation precision and model
generalization. However, the integrated U-Net model's incorporation of residual blocks and other structures
substantially increases its parameter count and computational complexity. Liu T. et al., (2024), proposed a
semantic segmentation-based weed detection method aimed at simplifying the detection process through crop
pixel segmentation and vegetation identification outside crop masks. The indirect segmentation strategy avoids
the complexity of directly detecting different weed species. By optimizing the ResNet50-based semantic
segmentation model DeeplLabV3+ using knowledge distillation techniques, it achieves faster and lighter
inference. Results show the model size reduced from 349.1 MB to 265.2 MB, while inference speed increased
from 10.2 FPS to over 34 FPS, achieving an average accuracy exceeding 99.5%. However, this approach
assumes all non-corn green vegetation is weeds, potentially failing when corn and weeds share similar colors.

In plant image instance segmentation, Zeng et al. (2023), developed MT-SegNet, a multi-task
segmentation network for 3D point clouds. By integrating a multi-value conditional random field model, it
successfully achieved instance segmentation of Colocasia esculenta leaf point clouds, achieving an average
segmentation accuracy of 88.10% and an average recall of 78.44%. Results demonstrate superior
performance across all metrics compared to multiple state-of-the-art models such as PointNet. Although the
model demonstrates strong segmentation performance, some misclassified points persist at the junctions
between stems, leaves, and overlapping foliage. To address the limitations of remote sensing in individual
crop analysis, Yuan et al. (2024), combined multispectral data with an enhanced YOLOv8-Seg model for
segmenting complex-morphology individual Chinese cabbage plants. This model supports independent
segmentation masks and detection at different scales, employs a Path Aggregation Feature Pyramid Network
(PAFPN) for multiscale feature integration, and optimizes sample matching. Results demonstrate that the
method achieves a detection mMAP@0.5:0.95 of 92.6% and segmentation mAP@0.5:0.95 of 86.3%, proving
its ability to maintain high segmentation accuracy even at lower spatial resolutions. To address the high cost
of manual annotation for leaf segmentation, Zhou L. et al. (2024), proposed an automated annotation method
based on zero-shot learning and transfer learning: first, a visual model locates leaves and generates initial
masks; then, a lightweight YOLOv8-Segment model is trained. Requiring only 6.5MB of parameters, this model
achieves an APso segmentation accuracy of 0.888, outperforming traditional methods relying on 150 manually
annotated plants (APs0=0.841) while completely eliminating manual annotation. However, its performance
heavily depends on the accuracy of initial detection boxes, with early localization failures leading to cascading
errors.
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In balancing accuracy and complexity, Li Q. et al. (2021) and Yuan et al. (2024) enhanced accuracy
through complex structures but sacrificed efficiency. Liu T. et al., (2024) and Zhou L. et al. (2024) achieved
lightweighting via strategy design or distillation techniques but relied on specific prerequisites. Regarding
application scenarios, Zeng et al. (2023) focused on 3D point clouds, Yuan et al. (2024) targeted multispectral
remote sensing, while Liu T. et al., (2024) and Zhou L. et al. (2024) prioritized cost and efficiency in practical
deployments. Most methods demonstrate strong performance on specific datasets or under controlled
conditions, yet stability issues persist in complex natural environments.

DEEP LEARNING-BASED PREDICTION OF CROP GROWTH, DEVELOPMENT AND YIELD

Predicting crop growth involves modeling environmental and historical data to forecast future growth
conditions and yields. Traditional methods rely on statistics and machine learning, but require manual feature
selection, resulting in complex models that struggle to handle nonlinear relationships. In recent years,
researchers have developed time-series prediction models to extract temporal features, predict the impact of
environmental factors on crop growth, and provide novel approaches for phenotyping simulation and
prediction(Nguyen et al., 2025).

Li L. et al. (2021), constructed a tomato transpiration prediction model based on a Long Short-Term
Memory (LSTM) network, using air temperature and humidity, light intensity, and canopy relative leaf area
index as input variables. Results showed that on the test set, the ST-LSTM model achieved a coefficient of
determination R? of 0.9925, with a mean absolute error (MAE) of 4.53 g and root mean square error (RMSE)
of 11.02 g, significantly outperforming comparison models (NARX, Elman, and RNN). However, this model
requires extensive high-quality time-series data for training, and data gaps or noise may compromise its
performance. Wang C. et al. (2022), developed a plant growth and development prediction model based on
spatio-temporal long short-term memory (ST-LSTM) networks, incorporating environmental factors. By
leveraging the spatio-temporal dependency of plant growth and integrating spatio-temporal deep features, the
model successfully predicted future plant growth and development image sequences. Experimental results
showed prediction R2? values of 0.9619, 0.9158, and 0.9087 for canopy leaf area, canopy width, and leaf count,
respectively, validating the effectiveness of ST-LSTM in plant growth and development forecasting. However,
the model exhibits certain limitations, such as image blurring with extended prediction periods and reduced
accuracy for complex plant structures. 0.9087, and 0.9158, respectively, validating the effectiveness of ST-
LSTM in plant growth prediction. However, the model exhibits limitations, such as image blurring with extended
prediction time, insufficient accuracy for complex phenotypic features, and restricted processing capability to
background-removed RGB images. Yang et al. (2024), proposed a hybrid model, TMEAD-BILSTM, combining
mutation point detection with deep learning to predict alfalfa leaf area index (LAIl). This model integrates
environmental factors (temperature, soil moisture, etc.), meteorological data, and growing days. By employing
a BILSTM network with an encoder-attention-decoder architecture to capture long-term dependencies, it
achieves prediction accuracy with R? > 0.99, significantly outperforming traditional models. However, the model
exhibits high computational complexity and relies on large-scale, high-quality datasets for training.

Addressing the limitation of existing studies that focus solely on predicting dynamic changes in single
phenotypic traits without comprehensively illustrating the entire plant growth process, Duan et al. (2024),
proposed a multi-variety rice growth visualization prediction technique based on an improved Pix2Pix-HD
model. Employing a data-driven strategy, the method achieved an average correlation coefficient of 0.762
between 15 morphological and textural phenotypic traits extracted from predicted images and their actual
values, enabling high-resolution growth visualization simulation. Notably, this model only predicts for a single
growth stage and does not cover the entire rice growth cycle.

LiL. etal (2021) and Yang et al. (2024) focused their research on high-precision numerical predictions
(e.g., transpiration, LAI), making their models highly suitable for decision support in precision agriculture.
Wang C. et al. (2022) and Duan et al. (2024) dedicated their efforts to generating visual images, providing
richer and more comprehensive phenotypic information while enhancing interpretability. All these studies
indicate that high-performance plant growth prediction models require large-scale, high-quality data. As models
become more complex (e.g., incorporating attention mechanisms or GANSs), predictive capability increases
alongside computational costs and data quality requirements. Furthermore, accuracy degradation in long-term
predictions—such as blurred images or incomplete cycle coverage—remains a critical challenge that demands
urgent solutions.
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In recent years, academic research on crop yield prediction has primarily employed neural network
models. These models monitor growth environments by collecting feature data, identify key factors, and
digitally input them into the model. Once established, the model's performance is evaluated by comparing
predicted values with actual values. Existing research shows a shift in both data and model structure—from
single data sources to multi-source data fusion, and from single deep learning architectures to multi-model
coupling (Li et al., 2024).

In current research, remote sensing technology is widely employed for yield prediction. Researchers
extract key yield-indicating features by analyzing remote sensing imagery and feed these features into neural
networks for predictive analysis. Tian et al. (2024), proposed the AMCN model (AMCN1 architecture), which
concurrently integrates CNN and LSTM based on remote sensing and meteorological data to estimate wheat
yield. This model extracts spatial features and temporal dependencies from input data, avoiding potential
information loss associated with sequential connections. The model achieved a coefficient of determination R?
= 0.68 and a root mean square error RMSE = 22.97 kg/ha on the test set, demonstrating high prediction
accuracy. However, its performance significantly deteriorates under extreme conditions, and its high
computational complexity limits large-scale application. Toledo et al. (2024), proposed a multimodal framework
integrating heterogeneous multimodal data to predict maize yield. This architecture assigns weights based on
pattern characteristics and temporal variations, thereby revealing the dynamic processes of plant growth
interacting with the environment. In experiments, the models achieved coefficient of determination R? values
ranging from 0.82 to 0.93 for yield predictions, demonstrating exceptionally high predictive accuracy. However,
model performance remains constrained by data quality, and its complex structure and high computational
demands limit deployment. Jian et al. (2024), developed the GCBA hybrid deep learning model by deeply
integrating multi-source heterogeneous data and enhancing the GOA and attention mechanisms. This model
demonstrated outstanding performance in handling complex time series and diverse remote sensing datasets.
In estimating U.S. county-level soybean yields for 2019-2020, this model significantly outperformed five
comparison models including SVR, RFR, and CNN, achieving optimal performance with R? = 0.7057 and
RMSE = 4.4612 bushels/acre, demonstrating high accuracy and stability. However, limitations include
suboptimal performance under extreme climatic conditions, structural complexity, and high dependency on
high-quality data.

From the dual-source “remote sensing + meteorological” data of Tian et al. (2024), to the deep fusion of
“‘multi-source heterogeneous remote sensing data + photosynthetic parameters” in Jian et al. (2024), and
further to the “heterogeneous multimodal data” adopted by Toledo et al. (2024), a clear shift from single-source
data to multi-source, multimodal data fusion is evident. Similarly, from the parallel CNN-LSTM architecture
(AMCN) of Tian et al. (2024), to the serial coupling of CNN-BiGRU-Attention enhanced by GOA optimization
(GCBA) in Jian et al. (2024), and finally to the dynamic weight allocation framework designed for multimodal
data in Toledo et al. (2024), this progression illustrates a transition from single-model approaches to multi-
model coupling and optimization.

However, it is worth noting that the aforementioned crop yield prediction models generally face
challenges such as insufficient generalization capabilities for extreme weather events, high model complexity,
and substantial computational costs.

Deep Learning-Based Research on Plant Stress and Related Factors

Crops are frequently affected by biotic and abiotic stresses, such as pests, diseases, climate change,
and microbial activity (Singh et al., 2018), leading to reduced yield and quality. Drought and pests are two
major constraints on global food production (Cen et al., 2020). By continuously monitoring environmental
parameters and combining them with physiological and biochemical indicators of crops, researchers can
develop sensitive and accurate stress response models. Table 4 presents the detection of plant pest and
disease stress using deep learning techniques.

(1) Drought stress

Water deficit reduces photosynthetic and transpiration rates, inhibits chlorophyll fluorescence, and
ultimately affects crop growth and development (Yin et al., 2024). Monitoring crop growth conditions helps
breed superior varieties with strong water stress resistance, thereby enhancing crop yields in arid regions. A
review of water stress research literature indicates that studies over the past 20 years have primarily focused
on canopy temperature, transpiration rate, and chlorophyll content (Yin et al., 2024).
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Zhang et al. (2024), developed a multi-task classification model based on infrared and RGB images
using 1DCNN to evaluate drought resistance in poplar seedlings. The study demonstrated that when using
four PCA principal components as input, the model achieved classification accuracies of 81.8% for variety
drought resistance and 62.3% for individual stress level classification, outperforming traditional machine
learning methods. However, the accuracy for stress level classification remained significantly lower than that
for variety classification, indicating that distinguishing varying degrees of stress is more challenging. It should
be noted that this study was validated only during the seedling stage of poplar trees, and its applicability to
stress monitoring throughout the entire growth cycle remains unknown. Yao et al. (2024), proposed a drought
stress monitoring model for key growth stages of winter wheat based on DenseNet121. The study collected
drought stress images across three critical growth stages. By optimizing training strategies, adjusting learning
rates, and incorporating attention mechanisms, the model achieved an average recognition accuracy of
94.67%, validating its effectiveness. However, since drought stress is a continuous physiological process, the
phenotypic boundaries between adjacent stress levels are blurred, leading to misclassification of these
adjacent levels by the model. Wang L. et al. (2024), compared the performance of LSTM, ResNet18-LSTM,
and ResNet18-CBAM-LSTM models in dual-task classification of poplar seedling varieties and drought severity
using multi-source temporal data. Among these, the ResNet18-CBAM-LSTM model demonstrated optimal
performance, achieving a drought severity classification accuracy of 90.94%. This enabled continuous
monitoring of the dynamic responses of multiple poplar seedling varieties under drought stress. However,
feature extraction relies on manually designed image processing workflows and is sensitive to image quality.

Table 4
Application of Deep Learning Technology for Plant Pest and Disease Stress Detection

Data Data Comparison Refere
Purpose Data set preprocessin model Effect .
g enhancement Algorithm nce
i Faster R-
Field aphid . Markaphids Two- The CNN
) Self-built aphid and their Image average , .
detection image densel rotation stage accurac Lietal.
and 9 y ration, CFN Aoy DSSD, 2019
P collection populated flipping rate is
Identification model o
areas 76.8%. R-FCN, FPN
Image
Accurate . ;
classification DO, SMALL, Input image rotation, GAEnse  Accuracy: VGG-16, Ayan et
size random VGG-19, and
of pest IP102 datasets L : . mble o al. 2020
| normalization  scaling, mirror 98.81% others
mages L9
flipping
Cassava
Image Dataset, Angle rotation, All models
Detection of  Cassava Plant Combined saturation achieved VGG19, Dosset
cassava Disease case adjustment, CDDNet over 97% VGG16, and et al.
disease Consolidated and contrast aceurac ° others 2024
(2019-2020) enhancement y
Dataset
Prediction of . Harmonize Random .
fruit tree 2,010 images image sizes noise, blurring  DINOV2 Predictive FCN, Bai et
. of lobar . accuracy Deeplabv3+,
disease . and tag operations, -FCS o al. 2024
disease . 95.68% and others
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Background
Quantifying removal, Accuracy:
the extent of 25.4 RGB homogenizati  Not applicable SCDA SCDA V1 Lee et
pictures . v2 o al. 2024
tar spots on, gaussian 73.7%
filtering, etc.

The aforementioned studies each have distinct focuses: Zhang et al. (2024) emphasize the
effectiveness of multi-task learning and integrating biological prior knowledge; Yao et al. (2024) concentrate
on enhancing recognition accuracy during critical periods through advanced CNN architectures and training
techniques; Wang L. et al. (2024) focus on achieving continuous dynamic monitoring using temporal models.
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Future research should continue to advance in the areas of temporal modeling, multimodal data fusion, and
addressing category ambiguity to develop more robust and precise stress monitoring systems.
(2) Pest and disease stresses

Globally, food production losses due to diseases and pests account for approximately 14% and 10% of
total production, respectively (Huang et al., 2018). To enable large-scale pest detection, methods are gradually
shifting towards artificial intelligence-based approaches. To enable large-scale pest detection, methods are
gradually shifting towards artificial intelligence-based approaches. Pest recognition and detection methods
using deep learning techniques can be categorized into three types: feature-optimized detection, attention-
enhanced feature detection, and network tuning detection. Figure 5 illustrates a schematic diagram of various
plant pests.

To address the issue of low detection accuracy for aphids in fields, Li et al. (2019), designed a two-stage
aphid detector employing a “coarse-to-fine network” architecture. This model first utilizes a coarse
convolutional neural network (CCNN) to search for aphid clusters, then employs a fine convolutional neural
network (FCNN) to precisely identify aphid regions, ultimately achieving an average detection accuracy of
76.8%. However, due to the minuscule size of aphid targets—occupying only 1.5% of the image—feature loss
after multi-layer pooling downsampling fundamentally limits further improvements in model performance. Ayan
et al. (2020), proposed a deep learning model ensemble approach based on genetic algorithms (GA) to
address the challenge of precise classification of agricultural pests. This method utilized GA to automatically
optimize the weight distribution of three CNN models (Inception-V3, Xception, MobileNet) within the ensemble
(w1=0.509, w2=0.463, w3=0.921), thereby maximizing ensemble performance. Validation accuracy reached
up to 98.81% across three public datasets, demonstrating the strategy's effectiveness. However, this approach
also faces challenges including high computational complexity, poor interpretability, and limited performance
on ultra-large-scale datasets. Shifeng et al. (2021), addressed the challenges of low detection performance
due to high similarity among small pest features by proposing the CRA-Net model, which integrates a Channel
Recalibration Feature Pyramid Network (CRFPN) with an Adaptive Anchor Module (AA). This approach
improved the average detection accuracy to 67.9%. However, for categories with extremely small relative sizes
(occupying only about 0.03% of the image), detection accuracy remains low (AP=24.6%), highlighting the
technical bottleneck in detecting extremely small objects.

Li et al. (2019) and Shifeng et al. (2021), focused on detection tasks, aiming to both identify pest
categories and locate their positions. The former provided a dedicated detection solution for specific small
targets, while the latter introduced an advanced module to enhance the representation capabilities of general
small-object features. The research by Ayan et al. (2020) centered on classification tasks—determining the
pest category of an entire image—and proposed model optimization strategies that achieved exceptionally
high accuracy. Future pest detection research must continue to pursue breakthroughs in underlying network
architecture (e.g., preventing loss of small features), computational efficiency, and robustness toward targets
at extreme scales.

Convolutional neural networks are widely used for plant disease recognition, extracting deep image
features. The network learns features layer by layer, with the bottom layers recognizing basic features and the
top layers generating semantically rich advanced features. As shown in Figure 4, the convolutional neural
network for disease recognition extracts feature vectors from the input image using convolutional and pooling
layers, with disease type predicted by the fully connected layer classifier.
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Fig. 4 - Schematic diagram of a convolutional neural network for disease recognition
(Yu et al., 2024)
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Plant disease recognition is classified into two categories: type recognition and severity assessment.
Too et al. (2019), compared the performance of five convolutional networks, including VGG-16, in plant disease
recognition. Experiments demonstrated that the DenseNet-121 architecture achieved the highest accuracy of
99.75% in testing. However, the model's generalization capability in real field environments remains
questionable, and its analysis of class imbalance and rare class samples is insufficient. Dosset et al. (2024),
proposed an efficient, lightweight framework named CDDNet for detecting and classifying cassava leaf
diseases. This framework achieved over 97% accuracy across various datasets in real-time environments.
However, the model exhibits limited environmental adaptability and struggles to process images in complex
settings. Its processing speed on devices reaches only 9.76 FPS, falling short of meeting the demands for
high-frame-rate real-time processing. Too et al. (2019) prioritize accuracy, exploring the performance ceiling
of deep models under ideal conditions. Dosset et al. (2024) emphasize application-first approaches, advancing
technology toward practical implementation. Through lightweight design and attention mechanisms, they
achieve a favorable balance between accuracy and efficiency.

Identifying disease severity requires precise differentiation of categories, enabling both accurate
disease type identification and severity determination. Such models require high-quality datasets. However,
leaf images from different diseases often resemble each other, and the severity boundaries within the same
disease are unclear, complicating the classification task. Figure 5 shows images of several plant disease types.

rice water weevil

4

Grape black mold Wheat leaf rust Fusarium head blight

Fig. 5 - IDADP-based schematic diagrams of various plant pests and diseases
(Hefei Institutes of Physical Science et al., 2006)

In the task of identifying disease severity, different research teams have adopted approaches with
distinct focuses. Bai et al. (2024), focused on enhancing the extraction of subtle features in diseased leaves
by improving network architecture. They employed the DINOV2-fruit leaf segmentation model, utilizing
DINOv2-B as the backbone feature extraction network, and introduced the Class-Patch Feature Fusion Module
(C-PFEM), Explicit Feature Fusion Architecture (EFFA), and Adaptive Kernel Attribute Space Pyramid Pooling
(AKASPP). These innovations effectively improved the segmentation performance for various fruit tree leaf
diseases. In contrast, Lee et al. (2024), proposed Streamline Contour Detection Algorithm Version 2 (SCDA
v2) to quantify the severity of tar spots. This algorithm eliminates the need for empirical optimization of decision
input parameters, achieving an overall accuracy of 73.7% in tar spot laminar flow detection. It aims to deliver
acceptable accuracy without relying on extensive annotated data, making it more suitable for scenarios with
limited annotation resources. While the former may achieve higher precision with ample data, the latter offers
greater advantages in practicality and scalability.

Currently, plant pest and disease recognition systems primarily rely on supervised learning, though
labeled data remains costly. Future research should prioritize unsupervised learning to reduce data
dependency. Additionally, resources should be integrated to create a data-sharing platform, build large-scale,
diverse datasets, and develop lightweight recognition models to meet the demands of mobile applications with
limited resources and high real-time requirements.
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CHALLENGES

Although deep learning methods have achieved significant progress in agricultural fields such as crop
morphological feature analysis, crop growth and development prediction, yield forecasting, and drought and
pest/disease stress assessment, the following issues remain to be addressed:

(1) Data Requirements and Quality Bottlenecks: The generalization capability of plant phenotyping
models relies on large-scale, high-quality, and diverse annotated datasets. Currently, large-scale, high-quality,
and diverse public datasets covering different growth stages, seasons, and geographic regions remain scarce.
Moreover, capturing plant images is often hindered by organ overlap and occlusion. While 3D point cloud
technology partially mitigates this issue, its massive data volume, high computational and storage costs, and
susceptibility to data registration errors limit its application in real-time systems.

(2) Model Optimization and Hyperparameter Selection: Deep learning models face significant
challenges in practical deployment on resource-constrained mobile platforms, including high memory
consumption, slow inference speeds, and large parameter counts. Furthermore, hyperparameters such as
learning rate, filter size, and stride exhibit strong interdependencies, making the tuning process heavily reliant
on experience and low in automation. This severely impedes model reproducibility and broader application.

(3) Spatio-Temporal Modeling and Dynamic Forecasting: Plant development exhibits irreversible
temporal and phasic sequences. Current plant growth monitoring primarily relies on static or short-cycle image
analysis, failing to adequately capture spatiotemporal dynamics across growth cycles. To achieve accurate
plant growth prediction, challenges in long-term growth forecasting and multi-stage phenotypic correlation
analysis must be addressed to support precise modeling and systematic analysis of plant growth processes.

DISCUSSION AND OUTLOOK

To address these challenges, future research should focus on synergistic innovation across three
levels—data, models, and systems—to advance plant phenotyping toward standardization, intelligence, and
practical application:

(1) Building Multimodal Standardized Datasets and Data Generation Methods: Integrate domestic and
international resources to establish an open-source phenotypic dataset covering major crops, multiple growth
stages, and diverse environmental conditions, while formulating unified annotation standards. Combine
generative adversarial networks (GANs) and diffusion models to synthesize high-quality samples, thereby
enhancing model robustness under imbalanced and occluded conditions.

(2) Model Lightweighting and Adaptive Optimization: To address platform computing and real-time
processing demands under limited resources, research should focus on lightweight techniques such as neural
network pruning, quantization, and knowledge distillation to build embedded models that balance accuracy
and efficiency. For hyperparameter optimization, automated tuning strategies like meta-learning should be
adopted to enhance model training efficiency and reproducibility.

(3) Develop cross-stage spatio-temporal forecasting and universal models: To capture plant
phenotyping data throughout the entire growth cycle, a spatiotemporal hybrid network integrating temporal
imaging with environmental factors should be constructed to enable early diagnosis and prediction of growth
trends and stress responses. Research should explore cross-crop, cross-task universal pre-trained models,
leveraging transfer learning to enhance model adaptability across diverse scenarios and reduce redundant
modeling efforts.

(4) Promote the integrated development of learning and systems: In complex field environments, a
single model struggles to address all challenges. Therefore, we should develop multi-model fusion networks
based on ensemble learning to fully leverage the complementary advantages of multiple models and build
robust, interpretable analytical systems. Moving forward, plant phenotyping analysis systems should gradually
evolve toward platformization and cloud-edge collaboration, providing integrated solutions for precision
agriculture and smart breeding.
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