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ABSTRACT  

Accurate measurement of plant phenotypic data can provide a comprehensive understanding of plant 

physiology and help to study the relationship between plant genes and the environment. The application of 

visible light and other multi-source and multi-dimensional imaging sensing technology can provide a rich data 

source for plant phenotype identification and monitoring. With the continuous development and application of 

computer technology in the field of plant phenotype analysis, deep learning techniques have achieved 

significant progress in plant phenotype recognition and monitoring. On the basis of reviewing the relevant 

research results at home and abroad at this stage, this paper firstly describes the common ways of plant 

phenotype image acquisition. Then, it discusses in detail the current status of the application of deep learning 

technology in the fields of classification, detection and segmentation of plant phenotypes, crop development 

and yield prediction, as well as plant drought and pest stress, etc. Finally, it discusses the challenges and 

future development goals of the deep learning method in the monitoring and recognition of plant phenotypes. 

This paper aims to provide theoretical support and technical reference for the development and application of 

deep learning technology in the field of agricultural plant phenotyping. 

 

摘要  

精确测量植物表型数据可以全面了解植物生理状况，有助于深入研究植物基因与环境之间的关系。应用可见光

等多源多维度成像感知技术可为植物表型识别与监测提供丰富的数据源，随着计算机技术在植物表型分析领域

的不断发展应用，深度学习技术在植物表型识别与监测方面已取得了显著进展。在梳理现阶段国内外相关研究

成果的基础上，本文首先阐述了常见的植物表型图像采集方式；之后详细探讨了深度学习技术在植物表型的分

类、检测与分割，作物生长发育及产量预测，以及植物干旱与病虫害胁迫等领域的应用现状；最后讨论了深度

学习方法在植株表型监测与识别中的挑战与未来发展目标。本文旨在为深度学习技术在农业植物表型领域的发

展与应用提供理论支持和技术参考。 

 

INTRODUCTION 

Phenotype refers to observable morphological traits of organisms across different growth environments 

and stages ( Zhou et al., 2018). Plant phenotyping research focuses on acquiring high-quality trait data to 

quantify the influence of genotype and environment on key traits, such as quality, yield, and stress tolerance 

(Tester & Langridge, 2010, 2010; Ribaut et al., 2010). Accurate identification and monitoring of crop 

morphological traits during growth enable precise water and fertilizer management, enhancing intelligent 

agricultural production. Current plant phenotyping research emphasizes developing specialized algorithms to 

expand observable and measurable plant traits while enhancing analytical accuracy and efficiency (Zhao, 

2019). Table 1 illustrates classifications of common plant phenotypes and their specific characteristics. Optical 

sensors now enable extraction of plant growth parameters from captured images, and image technology 

applications in crop growth monitoring, pest and disease detection, and yield estimation are expanding. For 

instance, features like leaf area, plant height, and stem width can be derived directly from 2D images, while 

indices such as color metrics and normalized difference vegetation index (NDVI) facilitate quantitative plant 

growth analysis (Sancho-Adamson et al., 2019).  
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Table 1 
Common plant phenotypic classifications and their specific characteristics 

 

Extensive studies have shown that deep learning excels in solving intricate problems, with image 

recognition being a prominent success case (Syuen et al., 2022). Researchers have applied deep learning 

techniques to agriculture. Single-layer neural network methods are limited to specific plant phenotypic traits in 

specific environments (Hou et al., 2017; Zhang et al., 2020). In contrast, multi-layer neural network structures, 

such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Long Short-Term 

Memory (LSTM) models, exhibit better adaptability and have achieved impressive results in agricultural 

applications (Gowri et al., 2024). 

This paper systematically reviews traditional methods for capturing plant phenotyping images and 

summarizes the current applications of deep learning in plant classification, detection, and segmentation, as 

well as in growth, development, and yield prediction, and in assessing drought, pest, and disease stress. 

Finally, it discusses the challenges and future goals of deep learning in plant phenotypic monitoring and 

identification. The study aims to provide theoretical support and technical references for advancing deep 

learning applications in agricultural plant phenotyping. 

 

TRADITIONAL METHODS FOR PLANT PHENOTYPIC IMAGE ACQUISITION 

By processing multi-source plant image data, crop phenotypic parameters can be monitored in real time 

under different environmental conditions. This paper introduces five commonly used plant phenotyping 

acquisition techniques: visible light imaging, fluorescence imaging, infrared thermal imaging, 3D imaging, and 

hyperspectral imaging. Table 2 summarizes the different imaging techniques and their applications in plant 

phenotyping. 

 

Visible light imaging 

Visible light imaging captures reflected or transmitted light signals in the visible spectrum, converts them 

into digital data, and outputs the image (Aboalia et al., 2024). Marchetti et al., (2019), designed and validated 

a non-invasive, reproducible indoor phenotyping technique based on RGB images for screening barley 

genotypes with potential tolerance to water stress. Results showed significant correlations between canopy 

height and above-ground fresh weight (R² = 0.90, P < 0.001), leaf length, width, and relative water content 

(RWC). However, RGB imaging alone provides only morphological data. Comprehensive analysis of barley 

physiological responses requires integration with fluorescence imaging or destructive sampling.  

Phenotypic 
classification 

Subphenotypic 
classification 

Characteristic description 

Morphological 

Root system Root type, length, density, diameter, and number of branches 

Stem Stem thickness and growth habit (upright or prostrate) 

Leaf blade Leaf shape, color, size, thickness, and arrangement 

Flower Flower pattern, color, size, and arrangement 

Fruit Fruit shape, size, color, number and seed distribution 

Physiological 

Photosynthesis Photosynthetic rate and chlorophyll content 

Transpiration Stomatal density, opening and closing behavior, and water-use efficiency 

Stress tolerance Drought, salt, flood, cold, and high-temperature resistance 

Nutrient absorption Efficiency of elemental absorption 

 

Developmental 
biology 

 

Seed germination Germination rate, time, and potential 

Seedling stage Height, growth rate, and color 

Growth cycle Growth rate, flowering period, maturity period, and lifespan 

Branching and 
sprouting 

Number of tillers and bud distribution 
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Gée et al. (2023), calculated the normalized dark green color index (nDGCI) from RGB images of winter 

wheat captured under uniform lighting to estimate the nitrogen nutrition index (NNI), thereby predicting nitrogen 

status. Under single-variety conditions, the coefficient of determination R² between nDGCI and NNI reached 

0.73–0.91, indicating a high correlation between the two indices. Coswosk et al. (2024), utilized RGB images 

to analyze the relationships between vegetation indices and yield, morphological, and physiological traits 

across different maize genotypes. Their findings revealed that visible vegetation indices such as VARI, NGRDI, 

and GLI showed strong correlations with grain yield (reaching up to r=0.99). However, RGB sensors can only 

capture visible light bands and cannot capture near-infrared information, limiting their precise assessment of 

physiological parameters such as chlorophyll fluorescence and water stress.  

Visible light imaging technology is cost-effective and versatile, but it cannot capture depth or near-

infrared information. It struggles to extract effective features from sparse canopies and fails to obtain additional 

phenotypic data. Factors such as lighting conditions, background interference, and crop organ occlusion also 

significantly impact its analytical accuracy. These limitations hinder its large-scale deployment in practical 

production. 

Table 2 
Different Techniques for Plant Phenotyping 

Imaging 
technology 

Sensor 
Original 
image 

Extracted 
parameters 

Advantages 
Image 

example 
Reference 

Visible light 
imaging 

Charge-
coupled 

device(CC
D) 

Grayscale or 
color image 

Canopy size, 
plant 

structure, 
projected 
area, and 

other 
parameters 

Low cost, 
provides 

detailed color 
information 

 

(Coswosk et 
al. 2024) 

Marchetti et al., 
2019; 

Gée et al. 2023; 

Coswosk et al. 2024 

Fluorescenc
e imaging 

Fluorescen
ce imager 

(FLI) 

Fluorescence 
emission 

spectrum in the 
red and far-red 

regions 

Chlorophyll 
content 

monitoring 
and 

photosyntheti
c status 

Enables 
monitoring of 

photosynthetic 
efficiency, 

physiological 
status, and 

early detection 
of plant 

diseases 

(G. Liu et 
al., 2024) 

Si et al., 2023; 

Liu G. et al., 2024; 

Banah et al., 2024 

Thermal 
infrared 
imaging 

Infrared 
camera 

Continuous or 
discrete 

spectrum in the 
infrared region 

Leaf 
temperature, 

and 
pest/disease 

conditions 

Enables 
monitoring of 
plant moisture 
content, stress 

level, and 
temperature 
distribution 

(Sashuang 
et al. 2023) 

Sashuang et al. 
2023; 

Ma et al. 2024 

Three-
dimensional 

imaging 

Stereo or 
depth 

camera 
Depth image 

Plant height, 
branching, 
and canopy 

structure 

Fast and cost-
effective 3D 

data 
acquisition 

 

 

 

(Ge et al. 
2020) 

Wang R. et al. 2022; 
Tunca et al. 2024; 
Chen et al., 2024; 
Wang Y. et al., 2022; 
Kumar et al., 2022; 
Wang Y.et al., 2024; 
Zheng et al., 2022; 
Ge et al. 2020; X. Liu 
et al., 2024; Y. Zhou 
et al., 2024 

 

Hyperspectr
al imaging 

Hyperspect
ral imager 

(HSI) 

Continuous/dis
crete spectrum 

Leaf/canopy 
moisture, 
vegetation 

health index, 
and canopy 

density 

Enables 
identification of 

nutritional 
status, plant 

type, and 
disease 

presence 
(Eva et al. 

2023) 

Eva et al. 2023; 

Almoujahed et al. 
2025; 

Rahman et al. 2025 
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Fluorescence imaging 

Fluorescence imaging captures the emitted light from fluorescent substances that are excited by specific 

wavelengths, generating images based on their luminescent properties. Si et al., (2023), conducted drought 

stress experiments on Longjing tea seedlings in a dark chamber. By analyzing chlorophyll fluorescence excited 

by 248.6 nm deep ultraviolet laser, they found that the slope fluorescence index (SFI) was highly correlated 

with the number of stress days (R² = 0.94). Liu G. et al., (2024), employed multispectral fluorescence imaging 

to assess chlorophyll content in wheat. By processing multiple fluorescence images and calculating the 

ultraviolet-to-visible fluorescence ratio parameter, they found ten fluorescence parameters—including Fr740—

to be highly correlated with chlorophyll content. However, fluorescence signals are susceptible to interference 

from ambient light, necessitating measurements under low-light conditions. Banah et al. (2024), used a deep 

ultraviolet fluorescence spectrometer to collect emission spectra from healthy maize leaves and those infected 

with Southern leaf blight (SLB). Detection at the excitation wavelength revealed that SLB-infected leaves 

exhibited significantly higher fluorescence intensity at 325 nm compared to healthy leaves, indicating that 

enhanced fluorescence at this wavelength directly correlates with fungal infection phenotypes. However, the 

large diameter of the fluorescence spots made it difficult to distinguish fungal spore concentration gradients 

and their spatial distribution. 

Although fluorescence imaging offers advantages such as molecular-level sensitivity and real-time 

analysis of physiological processes, its application is constrained by drawbacks including significant 

interference from light exposure and background noise, relatively large fluorescence spot diameters, and the 

requirement for species- or genotype-specific calibration. 

 

Infrared thermography 

Infrared thermography captures and analyzes infrared radiation emitted by objects to reveal spatial 

temperature distributions, converting the radiation intensity into pseudo-color images (Zhang et al., 2022). 

Sashuang et al. (2023), utilized thermal imaging fused with visible light to extract multimodal features from 

potato canopy fusion images. They constructed a partial least squares regression model to predict potato 

photosynthesis and fluorescence dynamics, achieving an R² = 0.85 for net photosynthetic rate and R² = 0.66 

for stomatal conductance in Zhongshu No. 5 potatoes. However, thermal infrared cameras (640×480 resolution 

in this study) generally have lower resolution than RGB cameras, making it difficult to capture fine features or 

early stress responses. Ma et al. (2024), utilized infrared thermal imaging to obtain winter wheat canopy 

temperature data, thereby calculating the crown water stress index (CWSI). Findings revealed that during the 

jointing stage, CWSI exhibited extremely significant negative correlations (p<0.01) with soil moisture content 

and leaf relative water content, and significant negative correlations (p<0.05) with stomatal conductance, 

transpiration rate, and photosynthetic rate. During the flowering and grain filling stages, CWSI exhibited 

extremely significant negative correlations (p<0.01) with all physiological and soil parameters. However, to 

mitigate environmental fluctuations, infrared thermography measurements typically require specific time 

windows, limiting measurement flexibility and real-time monitoring capabilities. 

Infrared thermal imaging can directly reflect plant physiological states and capture changes in plant 

physiological functions. However, it is highly sensitive to environmental conditions and has relatively low 

resolution, making it difficult to detect micro-scale temperature variations at the leaf level. Therefore, it must 

be combined with other data to interpret physiological mechanisms and avoid misinterpretation. 

 

Current status of three-dimensional stereoscopic plant phenotypic analysis and detection 

Three-dimensional (3D) measurement technology allows fast, accurate, and non-invasive 

measurements, offering fundamental data for quantitative studies on plant growth patterns (Jiang et al., 2025). 

To enhance measurement accuracy and capture detailed crop spatial morphology, researchers have 

integrated 3D data into non-destructive crop inspection methods (Lei et al., 2024). Based on measurement 

methods, 3D phenotypic inspection techniques primarily include structure-from-motion (SfM), structured light 

methods, laser scanning, and binocular stereo vision techniques (Yu et al., 2024). 

The Structure-from-Motion (SfM) method reconstructs 3D information of target objects by processing 

sequential images or videos. Wang R. et al. (2022), achieved a segmentation accuracy of 0.961 for stem and 

leaf parts of seedling-stage Chinese cabbage using an improved hypervoxel segmentation method based on 

the SfM algorithm. The coefficient of determination R² for measured phenotypic parameters such as plant height 

and leaf length exceeded 0.98, with the MAPE for all parameters except leaf area remaining below 2.5%.  
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Tunca et al. (2024), calculated sorghum plant height using the difference between the digital surface 

model (DSM) and digital terrain model (DTM) generated through SfM. The results showed high consistency 

with ground-truth measurements (R² = 0.97, RMSE = 8.77 cm, MAPE = 5.98%), demonstrating that SfM 

combined with DSM, DTM, and ground control points can accurately estimate sorghum plant height. Although 

SfM achieves high accuracy under ideal conditions, it relies on feature matching across multi-view images. 

The resulting point cloud data is voluminous, making reconstruction of complex structures challenging. 

The structured light method obtains 3D information of an object by projecting a specific light pattern onto 

the object and capturing the deformation of the pattern using a sensor. Researchers acquired point cloud data 

of black-skinned chicken-of-the-woods fruiting bodies using an SR300 depth camera based on structured light 

technology, and obtained point cloud data of spherical fruit bodies using a dual-camera structured light system. 

Through point cloud reconstruction techniques and processing algorithms, they successfully extracted target 

three-dimensional phenotypic parameters. The former achieved an R² value exceeding 0.97, while the latter 

demonstrated a relative error in diameter reconstruction below 3.32% (Chen et al., 2024; Y. Wang et al., 2022). 

Although the structured light method yielded favorable results, it also faces limitations such as high demands 

on ambient lighting conditions, algorithmic complexity requiring manual intervention, and potentially reduced 

reconstruction accuracy for irregular shapes. 

3D laser scanning technology reconstructs 3D data of objects with high accuracy by scanning.  

Researchers employed LiDAR technology, 3D digital scanning methods, and 3D reconstruction techniques to 

capture 3D point clouds of strawberries at different growth stages, morphological structures of wheat seedlings, 

and multi-angle fruit point clouds of sweet peppers. This enabled non-destructive measurement of strawberry, 

wheat seedling stage, and bell pepper fruit. Among these, the R² values for individual strawberry point cloud 

counts, volume, plant height, and canopy area were relatively high (0.98/0.90/0.93/0.96). For wheat seedlings, 

the extraction accuracy of stem length, leaf length, stem diameter, and stem-leaf angle was high 

(R²=0.93/0.98/0.93/0.85). For bell pepper fruits, the mean relative errors for fruit width and height were small, 

at 1.72% and 1.60%, respectively (Kumar et al., 2022; Wang Y. et al., 2024; Zheng et al., 2022). Although 3D 

laser scanning technology offers high non-destructive fitting accuracy, its system integration, calibration, and 

algorithms are extremely complex, resulting in high deployment costs. 

The binocular stereo vision method measures depth information of objects using the parallax between 

two cameras with different viewing angles. Ge et al. (2020), employed binocular stereovision technology to 

identify cauliflower seedlings, utilizing the differential sum-of-squares algorithm for the stereo matching step 

and the k-medoids algorithm for the clustering step. Results demonstrated that this method achieved an 

average correct recognition rate of 98.75% across 240 pairs of cauliflower seedling images. To address the 

accuracy challenges in image depth estimation models caused by insufficient effective photometric loss 

metrics, researchers employed a stereo camera to capture RGB and depth images of field corn and Chinese 

cabbage. Segmentation and depth prediction were then performed. Compared to Monodepth2, the average 

relative error and average absolute error for field corn depth estimation decreased by 48.2% and 17.1%, 

respectively, while the average absolute error for Chinese cabbage leaf inclination was less than 5.5°, 

validating the feasibility of automated non-destructive crop measurement (X. Liu et al., 2024; Y. Zhou et al., 

2024). Although the binocular stereoscopic vision method is low-cost and generates highly accurate 3D data, 

it requires strict calibration and alignment procedures. Matching accuracy is affected by lighting conditions, 

and computational complexity is relatively high. 

Various 3D imaging technologies exhibit significant differences in accuracy, cost, and environmental 

requirements, creating complementary application scenarios. Compared to structured light methods, which are 

susceptible to ambient light interference, and stereo vision, which involves complex calibration and is affected 

by lighting conditions, Structure from Motion (SfM) relies less on lighting. However, it generates massive point 

cloud datasets, posing challenges for reconstructing complex plant structures. In terms of accuracy, 3D laser 

scanning typically achieves the highest precision but involves complex system integration and high deployment 

costs. SfM and stereo vision offer a better balance between cost and accuracy. Therefore, selecting the 

appropriate 3D imaging technology requires weighing accuracy requirements, budget constraints, and 

environmental conditions. 

 

Hyperspectral imaging technology 

Hyperspectral imaging captures both spatial and spectral information of a target, providing continuous 

spectral band data for each pixel. Eva et al. (2023), investigated the effects of nematode feeding and drought 
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stress on the spectral characteristics of maize leaves to evaluate the effectiveness of hyperspectral imaging 

in distinguishing between biotic and abiotic stresses in maize. The results showed that the accuracy rates for 

pest detection and drought stress detection reached 98% and 95.9%, respectively. However, the hyperspectral 

images in this study contained hundreds of bands, posing significant challenges for data processing. 

Almoujahed et al. (2025), employed hyperspectral cameras to detect Fusarium head blight (FHB) in winter 

wheat, successfully distinguishing healthy from infected ears before visual symptoms appeared, achieving an 

overall classification accuracy of 84.7%. However, hyperspectral data in the experiment proved susceptible to 

environmental interference, requiring multiple calibrations. Among the 224 bands in the full spectrum, only a 

few were correlated with FHB, making the optimization process cumbersome. Rahman et al. (2025), developed 

a high-throughput plant phenotyping system that successfully predicted leaf water content under drought 

conditions by analyzing spectral reflectance from acquired hyperspectral images, achieving an R² = 0.81 on 

the test set. However, hyperspectral data comprise numerous bands (224 bands used in this study), with 

adjacent bands exhibiting high correlation, thereby increasing the complexity of data processing and model 

training. 

Despite demonstrating significant potential in plant phenotyping research, hyperspectral imaging 

technology faces multiple constraints in its application, including environmental interference, data noise, 

dimensional redundancy, and hardware costs. Future efforts should integrate multispectral fusion, field 

adaptive calibration, or low-cost sensor optimization to enhance its practicality. 

 

CURRENT STATUS OF PLANT PHENOTYPIC ANALYSIS AND MONITORING BASED ON DEEP 

LEARNING 

Deep neural networks consist of multiple layers of trainable structures, through which data passes to 

become more abstract and is eventually represented as a high-dimensional feature vector. Developed from 

early simple perceptual machines, deep neural networks can process complex information nonlinearly and 

automatically learn hierarchical features of the data, eliminating the need for manual feature extraction. Current 

research directions in deep learning for plant phenotyping and monitoring include: identification of crop 

morphological traits, prediction of crop growth, development, and yield, regression-based yield forecasting, 

and studies on plant stress responses (Bini et al., 2021). 

 

Recognition of plant phenotypic traits using deep learning 

In recent years, plant analysis research has gradually evolved from basic classification and regression 

to object detection and segmentation. In the field of crop phenotype recognition, the application of deep 

learning techniques is primarily categorized into classification, detection, and segmentation. This paper will 

systematically explore the application of deep learning in plant phenotypic feature recognition, focusing on 

these three categories. Figure 1 presents the classification, detection, and segmentation diagram of corn plants 

(Murphy et al., 2024), and Table 3 provides the plant morphological feature recognition based on deep learning. 

 

（1）Classification 

Plant image classification is generally divided into two main categories: cross-species coarse-grained 

semantic classification, which involves recognizing different plants by acquiring salient features from plant 

images, and same-species fine-grained classification, which requires the model to focus on subtle features in 

images to distinguish similar plants. In plant image classification, convolutional neural networks (CNNs) 

demonstrate excellent performance. Their network structure includes feature extraction and mapping modules, 

    
Categorization Detection Semantic segmentation Instance segmentation 

Fig. 1 - Example of classification, detection and segmentation of corn plants 
(Murphy et al., 2024) 
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achieving neuron weight sharing through convolution, activation, pooling, and fully connected layers, directly 

extracting plant features from images to improve processing speed and accuracy. Figure 2 presents the 

schematic diagram of the convolutional neural network. 

 

Fig. 2 - Convolutional neural network schematic(Cao et al., 2024) 

 

Currently, ResNet and MobileNet are the two most popular neural networks for plant image 

classification tasks, representing two distinct optimization approaches (Yang et al., 2025). ResNet's core 

advantage lies in its effective mitigation of gradient vanishing in deep networks through residual modules, 

enhancing feature propagation capabilities to better capture complex, abstract features. MobileNet, on the 

other hand, prioritizes extreme efficiency. By employing separable convolutions, it significantly reduces 

computational complexity and parameter count, making it well-suited for deployment on resource-constrained 

mobile devices while maintaining precise capture of fine-grained features. 

Ali et al. (2022), developed a plant leaf classification model based on the MobileNetV2 architecture 

using transfer learning. This model eliminates the need for manual feature extraction, employs a shallower 

architecture with fewer asynchronous parameters, and achieves classification accuracy exceeding 90%. 

However, it exhibits high system complexity, requiring the design of intricate termination conditions and 

knowledge transfer logic, along with parameter tuning. Vásconez et al. (2024), conducted a classification study 

on tomato wilt disease, comparing and analyzing 14 deep learning models. They evaluated performance using 

multiple metrics, with MobileNet-v2 and Xception models ultimately demonstrating the best results, both 

achieving an accuracy rate of 97.7%. However, the study's conclusions are based on a specific dataset and 

disease, and their generalizability to other plant diseases remains to be verified. Due to the unreliability of 

classification results generated from limited labeled crop samples, Wang H. et al. (2024), developed a 

customized network architecture, VPSNet. This network draws inspiration from ResNet's residual connection 

concept, introducing shortcut connections within each block to mitigate the vanishing gradient problem in deep 

networks. It enables efficient extraction of multi-level semantic features from limited labeled samples. 

Experiments demonstrate that VPSNet achieves outstanding performance across three limited-labeled-sample 

domains (SA II, SA III, SA V). However, this method was designed for satellite imagery and cannot be directly 

applied to RGB plant images. 

When pursuing extreme precision with ample computational resources, ResNet-based models should 

be prioritized. For mobile deployment or real-time processing, MobileNet and its variants (such as 

MobileNetV2) are the preferred choice. When data is scarce, customized network architectures and domain 

adaptation algorithms (like VPSNet) can be designed based on data characteristics (e.g., time series) to 

fundamentally enhance the model's ability to learn from limited samples. 

（2）Detection 

The detection task involves both classification and localization of targets, with the main models for plant 

image detection currently including YOLO and Faster R-CNN. Deep learning frameworks for target detection 

typically require large and diverse datasets for training. However, practical applications often encounter issues 

such as insufficient data volume and imbalanced sample sizes across categories, which can hinder the 

performance of trained models. 

Seyam et al. (2024), conducted a study on leaf disease detection using nine pre-trained models, 

including DenseNet201, alongside a custom CNN (LDDTA). All models were trained and evaluated on the 

PlantVillage dataset. Results indicate that LDDTA achieves comparable performance to pre-trained models 

while requiring the shortest training time (1891.22 seconds). With only 184,890 parameters and a model size 

of 2.36 MB, it significantly undercuts other models, achieving an optimal balance between efficiency and 
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resource consumption. Rai and Pahuja (2024), designed a deep convolutional neural network (ETL-NET) 

based on ensemble transfer learning to detect diseases in cotton leaves and plants. By employing a bagging 

strategy to average and fuse the probability outputs from five optimal models including InceptionV3, the 

approach enhanced robustness. In real field conditions, ETL-NET achieved a near-perfect classification 

accuracy of 99.48%. However, it should be noted that due to integrating five pre-trained models, ETL-NET's 

training time is significantly longer than that of a single model. Mhala et al. (2025), developed an efficient and 

robust potato disease diagnosis system by integrating transfer learning, customized data augmentation, and 

regularization techniques. Performance comparisons of NASNetMobile, DenseNet201, and ResNet152v2 

models were conducted on detecting three types of diseased potato leaf images captured in real field 

environments. Results showed DenseNet201 achieved the highest accuracy of 77.14% on the original dataset, 

but its large parameter count necessitates future exploration of distillation and quantization techniques. 

Table 3 
Deep Learning-Based Recognition of Plant Morphological Features 

Task Database 
Data 

preproces
sing 

Data 
enhance- 

ment 

Model Effect 
Comparison 

algorithm 
Refe- 
rence 

Tomato 
Wilt 

Classifica
tion 

3,737 RGB 
images 

Scale-
dependent 

image 

Not 
applicable 

MobileNet-
v2, 

Xception 

Accuracy: 
97.7% 

12 
Mainstream 
CNN models 

used 

(Váscon
ez et al. 
2024) 

Plant leaf 
stage 

identificati
on 

MalayaKew 
dataset 

Rotated by 
7 degrees 

Rotation, 
shifting, 

mirroring, 
and 

shuffling 

S-LeafNET, 
W-

LeafNET,P-
LeafNET 

The accuracy 
rate exceeds 

99% 

ResNet26, 
Alex-Net, and 

ResNet50 

(H. 
Wang et 
al. 2024) 

Blade 
disease 

detection 

PlantVillage 
dataset 

Image 
standardiz
ation, and 
normalizati

on of 
image 
values 

Rotation, 
flipping, 

cropping, 
and 

adjustment 

Custom 
convolution

al neural 
network  

Outperforms 
pretrained 

models 

DenseNet201, 
among others 

(Seyam 
et al. 
2024) 

Classifica
tion of 

diseased 
cotton 
leaves 

Kaggle's 
datasets with 

2,293 and 
1,711 images 

Normalize
d image 

size 

Random 
permutation 

of image 
data 

Bagging 
integrated 

Accuracy rate 
exceeding 

98.5% 

InceptionV3, 
among others 

(Rai & 
Pahuja ,
2024) 

Detection 
of potato 
leaf blight 

3,076 disease-
infected leaf 

images 

Dataset 
allocation 
and pixel 

value 
normalizati

on 

Rotation 
and data 

enhanceme
nt 

techniques 

DenseNet2
01 

Achieves the 
highest 

accuracy 

NASNetMobil
e and 

ResNet152v2  

(Mhala et 
al. 2025) 

Weed 
detection 

3,857 
annotated 

images 

Image 
standardiz

ation, 
segmentat
ion, and 

preproces
sing 

Not 
applicable 

Optimized 
DeepLabV
3+ model 

Average 
accuracy rate 

exceeding 
99.5% 

CCNet,GCNet
,ISANet, and 
DeepLabV3 

(T. Liu et 
al., 2024) 

 

When models need to be deployed for edge computing and mobile applications, the LDDTA model is 

recommended. When computational cost is not a concern and peak performance is required, the ETL-NET 

model is the preferred choice. For detecting complex backgrounds and unevenly distributed samples of 

different diseases, the DenseNet201 model is suitable. 

（3）Segmentation 

The effectiveness of leaf segmentation is often influenced by dataset quality as well as environmental 

factors such as complex backgrounds and lighting conditions (Wang & Cao, 2021).  
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In recent years, image segmentation research has incorporated various deep learning methods, with 

segmentation tasks categorized into semantic segmentation and instance segmentation. Semantic 

segmentation classifies images at the pixel level, accurately identifying different regions of crops and 

backgrounds. It is widely used for recognizing structures such as crop morphology, leaves, and roots, with U-

Net and DeepLabV3+ being common semantic segmentation architectures. Figure 3 illustrates the U-Net 

model (Cao et al., 2024). Instance segmentation, in contrast, not only distinguishes between different 

categories but also identifies individual instances within the same category, with Mask R-CNN being a typical 

method. 

 

In plant image semantic segmentation, Li Q. et al. (2021), proposed an ensemble U-Net segmentation 

model designed for small-sample datasets. By integrating residual blocks and gated convolutions to construct 

edge structures, this model effectively extracts boundary semantic information from target images. It achieved 

a segmentation accuracy exceeding 92.14%, significantly improving fruit segmentation precision and model 

generalization. However, the integrated U-Net model's incorporation of residual blocks and other structures 

substantially increases its parameter count and computational complexity. Liu T. et al., (2024), proposed a 

semantic segmentation-based weed detection method aimed at simplifying the detection process through crop 

pixel segmentation and vegetation identification outside crop masks. The indirect segmentation strategy avoids 

the complexity of directly detecting different weed species. By optimizing the ResNet50-based semantic 

segmentation model DeepLabV3+ using knowledge distillation techniques, it achieves faster and lighter 

inference. Results show the model size reduced from 349.1 MB to 265.2 MB, while inference speed increased 

from 10.2 FPS to over 34 FPS, achieving an average accuracy exceeding 99.5%. However, this approach 

assumes all non-corn green vegetation is weeds, potentially failing when corn and weeds share similar colors. 

In plant image instance segmentation, Zeng et al. (2023), developed MT-SegNet, a multi-task 

segmentation network for 3D point clouds. By integrating a multi-value conditional random field model, it 

successfully achieved instance segmentation of Colocasia esculenta leaf point clouds, achieving an average 

segmentation accuracy of 88.10% and an average recall of 78.44%. Results demonstrate superior 

performance across all metrics compared to multiple state-of-the-art models such as PointNet. Although the 

model demonstrates strong segmentation performance, some misclassified points persist at the junctions 

between stems, leaves, and overlapping foliage. To address the limitations of remote sensing in individual 

crop analysis, Yuan et al. (2024), combined multispectral data with an enhanced YOLOv8-Seg model for 

segmenting complex-morphology individual Chinese cabbage plants. This model supports independent 

segmentation masks and detection at different scales, employs a Path Aggregation Feature Pyramid Network 

(PAFPN) for multiscale feature integration, and optimizes sample matching. Results demonstrate that the 

method achieves a detection mAP@0.5:0.95 of 92.6% and segmentation mAP@0.5:0.95 of 86.3%, proving 

its ability to maintain high segmentation accuracy even at lower spatial resolutions. To address the high cost 

of manual annotation for leaf segmentation, Zhou L. et al. (2024), proposed an automated annotation method 

based on zero-shot learning and transfer learning: first, a visual model locates leaves and generates initial 

masks; then, a lightweight YOLOv8-Segment model is trained. Requiring only 6.5MB of parameters, this model 

achieves an AP50 segmentation accuracy of 0.888, outperforming traditional methods relying on 150 manually 

annotated plants (AP50=0.841) while completely eliminating manual annotation. However, its performance 

heavily depends on the accuracy of initial detection boxes, with early localization failures leading to cascading 

errors. 

 

Fig. 3 - U-Net model diagram (Cao et al., 2024) 
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In balancing accuracy and complexity, Li Q. et al. (2021) and Yuan et al. (2024) enhanced accuracy 

through complex structures but sacrificed efficiency. Liu T. et al., (2024) and Zhou L. et al. (2024) achieved 

lightweighting via strategy design or distillation techniques but relied on specific prerequisites. Regarding 

application scenarios, Zeng et al. (2023) focused on 3D point clouds, Yuan et al. (2024) targeted multispectral 

remote sensing, while Liu T. et al., (2024) and Zhou L. et al. (2024) prioritized cost and efficiency in practical 

deployments. Most methods demonstrate strong performance on specific datasets or under controlled 

conditions, yet stability issues persist in complex natural environments. 

 

DEEP LEARNING-BASED PREDICTION OF CROP GROWTH, DEVELOPMENT AND YIELD 

Predicting crop growth involves modeling environmental and historical data to forecast future growth 

conditions and yields. Traditional methods rely on statistics and machine learning, but require manual feature 

selection, resulting in complex models that struggle to handle nonlinear relationships. In recent years, 

researchers have developed time-series prediction models to extract temporal features, predict the impact of 

environmental factors on crop growth, and provide novel approaches for phenotyping simulation and 

prediction(Nguyen et al., 2025). 

Li L. et al. (2021), constructed a tomato transpiration prediction model based on a Long Short-Term 

Memory (LSTM) network, using air temperature and humidity, light intensity, and canopy relative leaf area 

index as input variables. Results showed that on the test set, the ST-LSTM model achieved a coefficient of 

determination R² of 0.9925, with a mean absolute error (MAE) of 4.53 g and root mean square error (RMSE) 

of 11.02 g, significantly outperforming comparison models (NARX, Elman, and RNN). However, this model 

requires extensive high-quality time-series data for training, and data gaps or noise may compromise its 

performance. Wang C. et al. (2022), developed a plant growth and development prediction model based on 

spatio-temporal long short-term memory (ST-LSTM) networks, incorporating environmental factors. By 

leveraging the spatio-temporal dependency of plant growth and integrating spatio-temporal deep features, the 

model successfully predicted future plant growth and development image sequences. Experimental results 

showed prediction R2 values of 0.9619, 0.9158, and 0.9087 for canopy leaf area, canopy width, and leaf count, 

respectively, validating the effectiveness of ST-LSTM in plant growth and development forecasting. However, 

the model exhibits certain limitations, such as image blurring with extended prediction periods and reduced 

accuracy for complex plant structures. 0.9087, and 0.9158, respectively, validating the effectiveness of ST-

LSTM in plant growth prediction. However, the model exhibits limitations, such as image blurring with extended 

prediction time, insufficient accuracy for complex phenotypic features, and restricted processing capability to 

background-removed RGB images. Yang et al. (2024), proposed a hybrid model, TMEAD-BiLSTM, combining 

mutation point detection with deep learning to predict alfalfa leaf area index (LAI). This model integrates 

environmental factors (temperature, soil moisture, etc.), meteorological data, and growing days. By employing 

a BiLSTM network with an encoder-attention-decoder architecture to capture long-term dependencies, it 

achieves prediction accuracy with R² > 0.99, significantly outperforming traditional models. However, the model 

exhibits high computational complexity and relies on large-scale, high-quality datasets for training. 

Addressing the limitation of existing studies that focus solely on predicting dynamic changes in single 

phenotypic traits without comprehensively illustrating the entire plant growth process, Duan et al. (2024), 

proposed a multi-variety rice growth visualization prediction technique based on an improved Pix2Pix-HD 

model. Employing a data-driven strategy, the method achieved an average correlation coefficient of 0.762 

between 15 morphological and textural phenotypic traits extracted from predicted images and their actual 

values, enabling high-resolution growth visualization simulation. Notably, this model only predicts for a single 

growth stage and does not cover the entire rice growth cycle. 

Li L. et al. (2021) and Yang et al. (2024) focused their research on high-precision numerical predictions 

(e.g., transpiration, LAI), making their models highly suitable for decision support in precision agriculture.  

Wang C. et al. (2022) and Duan et al. (2024) dedicated their efforts to generating visual images, providing 

richer and more comprehensive phenotypic information while enhancing interpretability. All these studies 

indicate that high-performance plant growth prediction models require large-scale, high-quality data. As models 

become more complex (e.g., incorporating attention mechanisms or GANs), predictive capability increases 

alongside computational costs and data quality requirements. Furthermore, accuracy degradation in long-term 

predictions—such as blurred images or incomplete cycle coverage—remains a critical challenge that demands 

urgent solutions. 
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In recent years, academic research on crop yield prediction has primarily employed neural network 

models. These models monitor growth environments by collecting feature data, identify key factors, and 

digitally input them into the model. Once established, the model's performance is evaluated by comparing 

predicted values with actual values. Existing research shows a shift in both data and model structure—from 

single data sources to multi-source data fusion, and from single deep learning architectures to multi-model 

coupling (Li et al., 2024). 

In current research, remote sensing technology is widely employed for yield prediction. Researchers 

extract key yield-indicating features by analyzing remote sensing imagery and feed these features into neural 

networks for predictive analysis. Tian et al. (2024), proposed the AMCN model (AMCN1 architecture), which 

concurrently integrates CNN and LSTM based on remote sensing and meteorological data to estimate wheat 

yield. This model extracts spatial features and temporal dependencies from input data, avoiding potential 

information loss associated with sequential connections. The model achieved a coefficient of determination R² 

= 0.68 and a root mean square error RMSE = 22.97 kg/ha on the test set, demonstrating high prediction 

accuracy. However, its performance significantly deteriorates under extreme conditions, and its high 

computational complexity limits large-scale application. Toledo et al. (2024), proposed a multimodal framework 

integrating heterogeneous multimodal data to predict maize yield. This architecture assigns weights based on 

pattern characteristics and temporal variations, thereby revealing the dynamic processes of plant growth 

interacting with the environment. In experiments, the models achieved coefficient of determination R² values 

ranging from 0.82 to 0.93 for yield predictions, demonstrating exceptionally high predictive accuracy. However, 

model performance remains constrained by data quality, and its complex structure and high computational 

demands limit deployment. Jian et al. (2024), developed the GCBA hybrid deep learning model by deeply 

integrating multi-source heterogeneous data and enhancing the GOA and attention mechanisms. This model 

demonstrated outstanding performance in handling complex time series and diverse remote sensing datasets. 

In estimating U.S. county-level soybean yields for 2019–2020, this model significantly outperformed five 

comparison models including SVR, RFR, and CNN, achieving optimal performance with R² = 0.7057 and 

RMSE = 4.4612 bushels/acre, demonstrating high accuracy and stability. However, limitations include 

suboptimal performance under extreme climatic conditions, structural complexity, and high dependency on 

high-quality data. 

From the dual-source “remote sensing + meteorological” data of Tian et al. (2024), to the deep fusion of 

“multi-source heterogeneous remote sensing data + photosynthetic parameters” in Jian et al. (2024), and 

further to the “heterogeneous multimodal data” adopted by Toledo et al. (2024), a clear shift from single-source 

data to multi-source, multimodal data fusion is evident. Similarly, from the parallel CNN-LSTM architecture 

(AMCN) of Tian et al. (2024), to the serial coupling of CNN-BiGRU-Attention enhanced by GOA optimization 

(GCBA) in Jian et al. (2024), and finally to the dynamic weight allocation framework designed for multimodal 

data in Toledo et al. (2024), this progression illustrates a transition from single-model approaches to multi-

model coupling and optimization. 

However, it is worth noting that the aforementioned crop yield prediction models generally face 

challenges such as insufficient generalization capabilities for extreme weather events, high model complexity, 

and substantial computational costs. 

 

Deep Learning-Based Research on Plant Stress and Related Factors 

Crops are frequently affected by biotic and abiotic stresses, such as pests, diseases, climate change, 

and microbial activity (Singh et al., 2018), leading to reduced yield and quality. Drought and pests are two 

major constraints on global food production (Cen et al., 2020). By continuously monitoring environmental 

parameters and combining them with physiological and biochemical indicators of crops, researchers can 

develop sensitive and accurate stress response models. Table 4 presents the detection of plant pest and 

disease stress using deep learning techniques. 

（1）Drought stress 

Water deficit reduces photosynthetic and transpiration rates, inhibits chlorophyll fluorescence, and 

ultimately affects crop growth and development (Yin et al., 2024). Monitoring crop growth conditions helps 

breed superior varieties with strong water stress resistance, thereby enhancing crop yields in arid regions. A 

review of water stress research literature indicates that studies over the past 20 years have primarily focused 

on canopy temperature, transpiration rate, and chlorophyll content (Yin et al., 2024). 
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Zhang et al. (2024), developed a multi-task classification model based on infrared and RGB images 

using 1DCNN to evaluate drought resistance in poplar seedlings. The study demonstrated that when using 

four PCA principal components as input, the model achieved classification accuracies of 81.8% for variety 

drought resistance and 62.3% for individual stress level classification, outperforming traditional machine 

learning methods. However, the accuracy for stress level classification remained significantly lower than that 

for variety classification, indicating that distinguishing varying degrees of stress is more challenging. It should 

be noted that this study was validated only during the seedling stage of poplar trees, and its applicability to 

stress monitoring throughout the entire growth cycle remains unknown. Yao et al. (2024), proposed a drought 

stress monitoring model for key growth stages of winter wheat based on DenseNet121. The study collected 

drought stress images across three critical growth stages. By optimizing training strategies, adjusting learning 

rates, and incorporating attention mechanisms, the model achieved an average recognition accuracy of 

94.67%, validating its effectiveness. However, since drought stress is a continuous physiological process, the 

phenotypic boundaries between adjacent stress levels are blurred, leading to misclassification of these 

adjacent levels by the model. Wang L. et al. (2024), compared the performance of LSTM, ResNet18-LSTM, 

and ResNet18-CBAM-LSTM models in dual-task classification of poplar seedling varieties and drought severity 

using multi-source temporal data. Among these, the ResNet18-CBAM-LSTM model demonstrated optimal 

performance, achieving a drought severity classification accuracy of 90.94%. This enabled continuous 

monitoring of the dynamic responses of multiple poplar seedling varieties under drought stress. However, 

feature extraction relies on manually designed image processing workflows and is sensitive to image quality. 

Table 4 
Application of Deep Learning Technology for Plant Pest and Disease Stress Detection 

 

The aforementioned studies each have distinct focuses: Zhang et al. (2024) emphasize the 

effectiveness of multi-task learning and integrating biological prior knowledge; Yao et al. (2024) concentrate 

on enhancing recognition accuracy during critical periods through advanced CNN architectures and training 

techniques; Wang L. et al. (2024) focus on achieving continuous dynamic monitoring using temporal models. 

Purpose Data set 
Data 

preprocessin
g 

Data 
enhancement 

model Effect 
Comparison 

Algorithm 
Refere

nce 

Field aphid 
detection 

and 
Identification 

Self-built aphid 
image 

collection 

Mark aphids 
and their 
densely 

populated 
areas 

Image 
rotation, 
flipping 

Two-
stage 
CFN 

model 

The 
average 
accuracy 

rate is 
76.8%. 

Faster R-
CNN, 

DSSD, 

R-FCN, FPN 

Li et al. 
2019 

Accurate 
classification 

of pest 
Images 

D0, SMALL, 
IP102 datasets 

Input image 
size 

normalization 

Image 
rotation, 
random 

scaling, mirror 
flipping 

GAEnse
mble 

Accuracy: 

98.81% 

VGG-16, 
VGG-19, and 

others 

Ayan et 
al. 2020 

Detection of 
cassava 
disease 

Cassava 
Image Dataset, 
Cassava Plant 

Disease 
Consolidated 
(2019-2020) 

Dataset 

Combined 
case 

Angle rotation, 
saturation 

adjustment, 
and contrast 
enhancement 

CDDNet 

All models 
achieved 
over 97% 
accuracy 

VGG19, 
VGG16, and 

others 

Dosset 
et al. 
2024 

Prediction of 
fruit tree 
disease 
extent 

2,010 images 
of lobar 
disease 

Harmonize 
image sizes 

and tag 
assignments 

Random 
noise, blurring 

operations, 
etc. 

DINOV2
-FCS 

Predictive 
accuracy 
95.68% 

FCN, 
Deeplabv3+, 
and others 

Bai et 
al. 2024 

Quantifying 
the extent of 

tar spots 

254 RGB 
pictures 

Background 
removal, 

homogenizati
on, gaussian 
filtering, etc. 

Not applicable 
SCDA 

v2 

Accuracy: 

73.7% 
SCDA v1 

Lee et 
al. 2024 
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Future research should continue to advance in the areas of temporal modeling, multimodal data fusion, and 

addressing category ambiguity to develop more robust and precise stress monitoring systems. 

（2）Pest and disease stresses  

Globally, food production losses due to diseases and pests account for approximately 14% and 10% of 

total production, respectively (Huang et al., 2018). To enable large-scale pest detection, methods are gradually 

shifting towards artificial intelligence-based approaches. To enable large-scale pest detection, methods are 

gradually shifting towards artificial intelligence-based approaches. Pest recognition and detection methods 

using deep learning techniques can be categorized into three types: feature-optimized detection, attention-

enhanced feature detection, and network tuning detection. Figure 5 illustrates a schematic diagram of various 

plant pests. 

To address the issue of low detection accuracy for aphids in fields, Li et al. (2019), designed a two-stage 

aphid detector employing a “coarse-to-fine network” architecture. This model first utilizes a coarse 

convolutional neural network (CCNN) to search for aphid clusters, then employs a fine convolutional neural 

network (FCNN) to precisely identify aphid regions, ultimately achieving an average detection accuracy of 

76.8%. However, due to the minuscule size of aphid targets—occupying only 1.5% of the image—feature loss 

after multi-layer pooling downsampling fundamentally limits further improvements in model performance. Ayan 

et al. (2020), proposed a deep learning model ensemble approach based on genetic algorithms (GA) to 

address the challenge of precise classification of agricultural pests. This method utilized GA to automatically 

optimize the weight distribution of three CNN models (Inception-V3, Xception, MobileNet) within the ensemble 

(w1=0.509, w2=0.463, w3=0.921), thereby maximizing ensemble performance. Validation accuracy reached 

up to 98.81% across three public datasets, demonstrating the strategy's effectiveness. However, this approach 

also faces challenges including high computational complexity, poor interpretability, and limited performance 

on ultra-large-scale datasets. Shifeng et al. (2021), addressed the challenges of low detection performance 

due to high similarity among small pest features by proposing the CRA-Net model, which integrates a Channel 

Recalibration Feature Pyramid Network (CRFPN) with an Adaptive Anchor Module (AA). This approach 

improved the average detection accuracy to 67.9%. However, for categories with extremely small relative sizes 

(occupying only about 0.03% of the image), detection accuracy remains low (AP=24.6%), highlighting the 

technical bottleneck in detecting extremely small objects. 

Li et al. (2019) and Shifeng et al. (2021), focused on detection tasks, aiming to both identify pest 

categories and locate their positions. The former provided a dedicated detection solution for specific small 

targets, while the latter introduced an advanced module to enhance the representation capabilities of general 

small-object features. The research by Ayan et al. (2020) centered on classification tasks—determining the 

pest category of an entire image—and proposed model optimization strategies that achieved exceptionally 

high accuracy. Future pest detection research must continue to pursue breakthroughs in underlying network 

architecture (e.g., preventing loss of small features), computational efficiency, and robustness toward targets 

at extreme scales. 

Convolutional neural networks are widely used for plant disease recognition, extracting deep image 

features. The network learns features layer by layer, with the bottom layers recognizing basic features and the 

top layers generating semantically rich advanced features. As shown in Figure 4, the convolutional neural 

network for disease recognition extracts feature vectors from the input image using convolutional and pooling 

layers, with disease type predicted by the fully connected layer classifier. 

 

 

Fig. 4 - Schematic diagram of a convolutional neural network for disease recognition  
(Yu et al., 2024) 
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Plant disease recognition is classified into two categories: type recognition and severity assessment. 

Too et al. (2019), compared the performance of five convolutional networks, including VGG-16, in plant disease 

recognition. Experiments demonstrated that the DenseNet-121 architecture achieved the highest accuracy of 

99.75% in testing. However, the model's generalization capability in real field environments remains 

questionable, and its analysis of class imbalance and rare class samples is insufficient. Dosset et al. (2024), 

proposed an efficient, lightweight framework named CDDNet for detecting and classifying cassava leaf 

diseases. This framework achieved over 97% accuracy across various datasets in real-time environments. 

However, the model exhibits limited environmental adaptability and struggles to process images in complex 

settings. Its processing speed on devices reaches only 9.76 FPS, falling short of meeting the demands for 

high-frame-rate real-time processing. Too et al. (2019) prioritize accuracy, exploring the performance ceiling 

of deep models under ideal conditions. Dosset et al. (2024) emphasize application-first approaches, advancing 

technology toward practical implementation. Through lightweight design and attention mechanisms, they 

achieve a favorable balance between accuracy and efficiency. 

Identifying disease severity requires precise differentiation of categories, enabling both accurate 

disease type identification and severity determination. Such models require high-quality datasets. However, 

leaf images from different diseases often resemble each other, and the severity boundaries within the same 

disease are unclear, complicating the classification task. Figure 5 shows images of several plant disease types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the task of identifying disease severity, different research teams have adopted approaches with 

distinct focuses. Bai et al. (2024), focused on enhancing the extraction of subtle features in diseased leaves 

by improving network architecture. They employed the DINOV2-fruit leaf segmentation model, utilizing 

DINOv2-B as the backbone feature extraction network, and introduced the Class-Patch Feature Fusion Module 

(C-PFFM), Explicit Feature Fusion Architecture (EFFA), and Adaptive Kernel Attribute Space Pyramid Pooling 

(AKASPP). These innovations effectively improved the segmentation performance for various fruit tree leaf 

diseases. In contrast, Lee et al. (2024), proposed Streamline Contour Detection Algorithm Version 2 (SCDA 

v2) to quantify the severity of tar spots. This algorithm eliminates the need for empirical optimization of decision 

input parameters, achieving an overall accuracy of 73.7% in tar spot laminar flow detection. It aims to deliver 

acceptable accuracy without relying on extensive annotated data, making it more suitable for scenarios with 

limited annotation resources. While the former may achieve higher precision with ample data, the latter offers 

greater advantages in practicality and scalability. 

Currently, plant pest and disease recognition systems primarily rely on supervised learning, though 

labeled data remains costly. Future research should prioritize unsupervised learning to reduce data 

dependency. Additionally, resources should be integrated to create a data-sharing platform, build large-scale, 

diverse datasets, and develop lightweight recognition models to meet the demands of mobile applications with 

limited resources and high real-time requirements. 

   

rice leaf roller rice water weevil Spodoptera frugiperda 

 

  

 Grape black mold Wheat leaf rust  Fusarium head blight 

Fig. 5 - IDADP-based schematic diagrams of various plant pests and diseases 

(Hefei Institutes of Physical Science et al., 2006) 
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CHALLENGES 

Although deep learning methods have achieved significant progress in agricultural fields such as crop 

morphological feature analysis, crop growth and development prediction, yield forecasting, and drought and 

pest/disease stress assessment, the following issues remain to be addressed: 

(1) Data Requirements and Quality Bottlenecks: The generalization capability of plant phenotyping 

models relies on large-scale, high-quality, and diverse annotated datasets. Currently, large-scale, high-quality, 

and diverse public datasets covering different growth stages, seasons, and geographic regions remain scarce. 

Moreover, capturing plant images is often hindered by organ overlap and occlusion. While 3D point cloud 

technology partially mitigates this issue, its massive data volume, high computational and storage costs, and 

susceptibility to data registration errors limit its application in real-time systems. 

(2) Model Optimization and Hyperparameter Selection: Deep learning models face significant 

challenges in practical deployment on resource-constrained mobile platforms, including high memory 

consumption, slow inference speeds, and large parameter counts. Furthermore, hyperparameters such as 

learning rate, filter size, and stride exhibit strong interdependencies, making the tuning process heavily reliant 

on experience and low in automation. This severely impedes model reproducibility and broader application. 

(3) Spatio-Temporal Modeling and Dynamic Forecasting: Plant development exhibits irreversible 

temporal and phasic sequences. Current plant growth monitoring primarily relies on static or short-cycle image 

analysis, failing to adequately capture spatiotemporal dynamics across growth cycles. To achieve accurate 

plant growth prediction, challenges in long-term growth forecasting and multi-stage phenotypic correlation 

analysis must be addressed to support precise modeling and systematic analysis of plant growth processes. 

 

DISCUSSION AND OUTLOOK 

To address these challenges, future research should focus on synergistic innovation across three 

levels—data, models, and systems—to advance plant phenotyping toward standardization, intelligence, and 

practical application: 

(1) Building Multimodal Standardized Datasets and Data Generation Methods: Integrate domestic and 

international resources to establish an open-source phenotypic dataset covering major crops, multiple growth 

stages, and diverse environmental conditions, while formulating unified annotation standards. Combine 

generative adversarial networks (GANs) and diffusion models to synthesize high-quality samples, thereby 

enhancing model robustness under imbalanced and occluded conditions. 

(2) Model Lightweighting and Adaptive Optimization: To address platform computing and real-time 

processing demands under limited resources, research should focus on lightweight techniques such as neural 

network pruning, quantization, and knowledge distillation to build embedded models that balance accuracy 

and efficiency. For hyperparameter optimization, automated tuning strategies like meta-learning should be 

adopted to enhance model training efficiency and reproducibility. 

(3) Develop cross-stage spatio-temporal forecasting and universal models: To capture plant 

phenotyping data throughout the entire growth cycle, a spatiotemporal hybrid network integrating temporal 

imaging with environmental factors should be constructed to enable early diagnosis and prediction of growth 

trends and stress responses. Research should explore cross-crop, cross-task universal pre-trained models, 

leveraging transfer learning to enhance model adaptability across diverse scenarios and reduce redundant 

modeling efforts. 

(4) Promote the integrated development of learning and systems: In complex field environments, a 

single model struggles to address all challenges. Therefore, we should develop multi-model fusion networks 

based on ensemble learning to fully leverage the complementary advantages of multiple models and build 

robust, interpretable analytical systems. Moving forward, plant phenotyping analysis systems should gradually 

evolve toward platformization and cloud-edge collaboration, providing integrated solutions for precision 

agriculture and smart breeding. 
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